With this textbook you will learn the basics about computers, basic electronics, sensor and measurement technology and programming.

We will also learn how to combine software and hardware and how we can communicate with the outside world using computer programs and create simple prototypes.

In this textbook we will use Arduino to learn these things.

https://www.halvorsen.blog
Table of Contents

1. Introduction to Arduino
2. Basic Electronics
3. Arduino Development Environment
4. Arduino Programming
5. Arduino Examples
What do you need?

To get started you need the following:

• PC (Windows, Mac, Linux)
• Arduino UNO (~200 NOK) or a Starter Kit (~800 NOK)
• Software (free)
• Electrical components (wires, resistors, etc.)

Equipment

- Temperature sensor
- Potentiometer
- Switch
- Light sensor
- Arduino
- USB cable
- LEDs
- Resistors
- Breadboard
- Wires
- Multimeter
- Thermistor
Introduction to Arduino

Arduino UNO Overview

1. External Power Supply
2. USB for PC connection
3. Reset button
4. 5V, GND
5. Analog In ports (0-5)
6. Digital ports (2-13)
Connect your Arduino to your PC

PC

Arduino

USB cable Type A-B

Play and Explore
Electronics Foundation

Electrical Circuit

Here you see a basic Electrical Circuit:

https://www.halvorsen.blog
Electrical Circuit with a Switch

Here you see a basic Electrical Circuit with a Switch:

Fritzing is an Open Source software for drawing your electrical circuits.

[http://www.fritzing.org]
Short Circuit

- We must never connect positive and negative side to a power source without having an electrical component in between.
- If you do, it is called a short circuit.
- For example, if you short circuit a battery, the battery will get very hot and the battery will run out very quickly.
- Some batteries may also start to burn.
- When it starts to smoke from electrical components, it happens because it has become too hot.
- In most cases, it means that the component is broken.

Ohms Law

This is Ohms Law:

\[U = RI \]

\[R = \frac{U}{I} \]
\[I = \frac{U}{R} \]

\[U \text{ – Voltage [V]} \]
\[R \text{ – Resistance [Ω]} \]
\[I \text{ – Current [A]} \]
Ohms Law

\[U = RI \]

Multimeter

You can use a Multimeter to measure current, voltage, resistance, etc. in an electric circuit.

https://learn.sparkfun.com/tutorials/how-to-use-a-multimeter
Light-Emitting Diode - LED

Resistors

Resistance is measured in Ohm (Ω)

Resistors comes in many sizes, e.g., $220\, \Omega$, $270\, \Omega$, $330\, \Omega$, $1\, \text{k}\, \Omega$, $10\, \text{k}\, \Omega$, ...

The resistance can be found using Ohms Law

$$U = RI$$

Resistor Color Codes

- What is the values for your resistors?
- Use the Color Codes to figure it out
- Use also a Multimeter to see if you get the same results.
Resistor Color Codes

What is the values for your resistors?

Use a «Resistor Color Code Calculator», which you can find on Internet

Resistors in Series and Parallel

Resistors in Series:

The total resistance of resistors connected in series is the sum of their individual resistance values.

When we have resistors in series, the sum of the sub-voltages is equal to the voltage of the voltage source.

Resistors in Parallel:

When we have resistors in parallel, the total resistance is always less than the smallest resistors.

Hans-Petter Halvorsen
Kirchhoff’s Laws

Kirchhoff’s Current Law:
\[\sum_{k=1}^{n} I_k = 0 \]
\[I_1 = I_2 + I_3 \]
\[I_1 - I_2 - I_3 = 0 \]

Kirchhoff’s Voltage Law:
\[\sum_{k=1}^{n} U_k = 0 \]
\[U = U_1 + U_2 + U_3 + \ldots \]

Switch

A switch breaks the flow of current through a circuit when open. When closed, the current will flow unobstructed through the circuit.
Breadboard

A breadboard is used to wire electric components together

Breadboard – Correct Wiring

Make sure not to short-circuit the components that you wire on the breadboard
Play and Explore

| Programming with Arduino |

https://www.halvorsen.blog

Arduino Development Environment

| Hans-Petter Halvorsen |
Arduino Software

In this window you create your Program

- Compile and Check if Code is OK
- Creates a New Code Window
- Upload Code to Arduino Board
- Open existing Code
- Save
- Open Serial Monitor
- Error Messages can be seen here

An be downloaded for free:

www.arduino.cc

Editor Preferences
Blinking LED Example

TRY IT OUT!

Arduino UNO has a built-in LED that is connected to Port 13

Make a Program that makes the built-in LED blinking

```
void setup() {
  pinMode(13, OUTPUT);
}

void loop() {
  digitalWrite(13, HIGH);
  delay(1000);
  digitalWrite(13, LOW);
  delay(1000);
}
```

Blinking LED Example

```
void setup()
{
  pinMode(13, OUTPUT);
}

void loop()
{
  digitalWrite(13, HIGH);
  delay(1000);
  digitalWrite(13, LOW);
  delay(1000);
}
```

This Program makes the built-in LED blinking

Try to change from 1000 to 100 – What happens then?

Turn ON LED
Wait 1 Second
Turn OFF LED
Wait 1 Second
Do you get an Error Message?

Choose correct Board (Arduino UNO) and the correct Port for Communication between PC and Arduino Board

Serial Monitor

You use the Serial Monitor when Debugging Arduino programs or when you want to show data or values from your program. You need to have Arduino connected to your PC in order to use the Serial Monitor.

```cpp
void setup()
{
    Serial.begin(9600);
}

void loop()
{
    Serial.print("Hello World");
    delay(1000);
}
```

TRY IT OUT!
Here you see how we can write a value to the Serial Monitor. This can be a value from a sensor, e.g., a temperature sensor.

```c
int myValue = 0;

void setup()
{
    Serial.begin(9600);
}

void loop()
{
    myValue = random(100);
    Serial.print("The Value is: ");
    Serial.println(myValue);
    delay(1000);
}
```

Play and Explore
Arduino Programs

All Arduino programs must follow the following main structure:

```cpp
// Initialization, define variables, etc.

void setup()
{
    // Initialization
    ...
}

void loop()
{
    // Main Program
    ...
}
```
Arduino Program - Example

```cpp
void setup()
{
  pinMode(11, OUTPUT);  // Set the Pin as an Output
}

void loop()
{
  digitalWrite(11, HIGH);  // Turn on the LED
  delay(1000);  // Wait for one second
  digitalWrite(11, LOW);  // Turn off the LED
  delay(1000);  // Wait for one second
}
```

Arduino Program – Using Comments

```cpp
void setup()
{
  pinMode(11, OUTPUT);  // Set the Pin as an Output
}

void loop()
{
  digitalWrite(11, HIGH);  // Turn on the LED

  /*
   * ... This will not be executed by the program because it is a comment...
   */
}
```
Creating and Using Functions

```c
int z;

void setup()
{
}

void loop()
{
    z = calculate(2,3);
}

float calculate(int x, int y)
{
    return (x + y);
}
```

TRY IT OUT!

Here are some Arduino Examples you should try.

Make sure your Arduino is connected to the PC and start the Code Editor
"Hello World" Example

Create the following program:

```c
void setup()
{
    Serial.begin(9600);
    Serial.println("Hello, world!");
}

void loop()
{
}
```

Open the "Serial Monitor" in order to see the output.
Example

Create the following program:

```cpp
int z; int a; int b;
void setup()
{
    Serial.begin(9600);
}
void loop()
{
    a = random(100);
    b = random(100);
    z = calculate(a, b); //Adding 2 Numbers

    //Write Values to Serial Monitor
    Serial.print(a);
    Serial.print(" + ");
    Serial.print(b);
    Serial.print(" = ");
    Serial.println(z);
    delay(1000);
}
float calculate(int x, int y)
{
    return (x + y);
}
```

Open the ”Serial Monitor” in order to see the output.

Creating Functions

Create a function that calculates the area of a circle with a given radius.

Write the result to the Serial Monitor.
Solution

```c
void setup()
{
    float area;
    Serial.begin(9600);
    // calculate the area of a circle with radius of 9.2
    float r=9.2;
    area = CircleArea(r);
    Serial.print("Area of circle is: ");
    // print area to 4 decimal places
    Serial.println(area, 4);
}

void loop()
{
}
```

// calculate the area of a circle
float CircleArea(float radius)
{
 float result;
 const float pi = 3.14;
 result = pi * radius * radius;
 return result;
}

For Loop

In this program we use a For Loop to find the Sum of 100 Random Numbers.

Then we find the Average.

The Sum and Average should be written to the Serial Monitor.

```c
int x; int sum = 0; float gjennomsnitt = 0;
void setup()
{
    Serial.begin(9600);
}

void loop()
{
    sum = 0;
    for (int i = 0; i<100; i++)
    {
        x = random(100);
        sum = sum + x;
    }
    average = sum / 100;
    Serial.print(" Sum = ");
    Serial.print(sum);
    Serial.print(" ,
    Average = ");
    Serial.println(average);
    delay(1000);
}
```
Arrays

Here we shall use arrays in the Arduino program

Create this program from scratch and open the Serial Monitor to see the result.

TRY IT OUT!

Arduino Programming

Here you will find complete overview of the Arduino programming language:

Play and Explore

https://www.halvorsen.blog

Arduino Examples

| Hans-Petter Halvorsen |
Arduino Examples

On the next pages you will find some Examples/Tasks that you should do step by step as stated in the text.

When you have finished a specific Example/Task, it is recommended that you “Play and Explore”, i.e., make small changes in the program, etc.

We need the following

Arduino UNO

Breadboard

+ LEDs, Resistors, Wires, etc.

The Breadboard is used to connect components and electrical circuits
Breadboard Example

Wires used to connect the electrical components together to a closed circuit.

Breadboard Wiring

Make sure not to short-circuit the components that you wire on the breadboard.

The Breadboard is used to connect components and electrical circuits.
Resistors

What is the values for your resistors?
• Use the Color Codes to figure it out
• Or use also a Multimeter to see if you get the same results.
• Or use a Resistor Calculator

Inputs and Outputs (Analog and Digital)

Digital Inputs and Digital Outputs

You can choose from the code if they are to be inputs or outputs

Those marked with ~ can also be used as "Analog Outputs", so-called PWM outputs

PWM - Pulse Width Modulation

Analog Inputs
Sensors and Actuators

- A **Sensor** is a converter that measures a physical size and converts it to a signal that can be read by an instrument, data acquisition device, or an Arduino. **Examples**: temperature sensor, pressure sensor, etc.
- An **Actuator** is a kind of motor that moves or controls a mechanism or system. It is powered by an energy source, typical electric current, hydraulic fluid pressure, or air pressure, and converts this energy into motion. **Examples**: Engine, Pump, Valve, etc.

http://en.wikipedia.org/wiki/Actuator
Sensors and Actuators

• The sensors and actuators can be either digital or analog.
• Some sensors and actuators have been made for Arduino, while others need to be connected in some circuit to work properly with Arduino.
• Many of these come with ready-made libraries for Arduino, so they are easy to use.

Examples

1. **Electrical Circuit Example**
2. **Blinking LED Example**
3. **Switch Example**
4. **Potentiometer Example**
5. **Temperature Example**
6. **Light Sensor Example**
7. **Thermistor Example**
Play and Explore

Example 1

Electrical Circuits
Electrical Circuits

Let's create the following circuit:

Instead of using a Battery we will use the Arduino board as a Power Supply (5V)

Light-Emitting Diode - LED

[Wikipedia]
Introduction

We will use the POWER ports “5V” and “GND” on the Arduino board

GND = Ground

Electrical Circuit

Make the following circuit using the Arduino board and a Breadboard:

Equipment:
- Breadboard
- LED
- Resistor
- Wires
- Multi-meter

Note! No Arduino Program is needed in this example
Why do you need a Resistor?

If the current becomes too large, the LED will be destroyed. To prevent this from happening, we will use a Resistor to limit the amount of current in the circuit.

What should be the size of the Resistor?

A LED typically needs a current like 20mA (can be found in the LED Datasheet). We use Ohm’s Law:

\[U = RI \]

Arduino gives \(U = 5V \) and \(I = 20mA \). We then get:

\[R = \frac{U}{I} \]

The Resistor needed will be \(R = \frac{5V}{0.02A} = 250\Omega \). Resistors with \(R = 250\Omega \) are not so common, so we can use the closest Resistors we have, e.g., 270\Ω.

Find the Resistor Size

Find the correct Resistor by using the Color Codes or a Multi-meter:

You may also use a “Resistor Calculator” which you find online:

Wiring

Make sure to connect the LED correctly.
The legs have different lengths

Example 1

Use a Breadboard – see next page

Wiring

Example 1

Make sure to connect the LED correctly.
The legs have different lengths

TRY IT OUT!

Note! Use a Resistor $R = 270\Omega$ to protect the LED
Play and Explore

|Programming with Arduino|
Blinking LED

Light-emitting diode - LED

[Wikipedia]
Introduction

We will make a program that makes the LED start blinking.

How-To Do it:
1. Wire the circuit and components
2. Make the Arduino program

Equipment

- Arduino UNO
- Breadboard
- LED
- Resistor, $R = 270\Omega$
- Wires (Jumper Wires)
Wiring

Example 2

Programming

Program Structure

```cpp
//Global variable
...

void setup()
{
    //Initialization
}

void loop()
{
    //Main Program
}
```

You need to use the following:

- **pinMode**(pin, mode);
 Which Pin (0, 1, 3, ...) are you using?

- **digitalWrite**(pin, value);
 A Digital Pin can have 2 values, either HIGH or LOW

- **delay**(ms);
 The delay() function makes a small pause in milliseconds (ms), e.g., delay(1000) pause the program for 1 second

A Digital Pin can either be an INPUT or an OUTPUT. Since we shall use it to turn-on a LED, we set it to OUTPUT.

Turn-on LED
Turn-off LED

void setup()
{
 pinMode(8, OUTPUT);
}

void loop()
{
 digitalWrite(8, HIGH); // Turn on the LED
 delay(1000); // Wait for one second
 digitalWrite(8, LOW); // Turn off the LED
 delay(1000); // Wait for one second

 int ledPin = 8;
 void setup()
 {
 pinMode(ledPin, OUTPUT);
 }
 void loop()
 {
 digitalWrite(ledPin, HIGH); // Turn on the LED
 delay(1000); // Wait for one second
 digitalWrite(ledPin, LOW); // Turn off the LED
 delay(1000); // Wait for one second
 }

 En ørliten forbedring. Vi bruker en variabel til å definere pinne-nummeret
Play and Explore

|Programming with Arduino|
Switch

Wiring

Use your Breadboard to make the following circuit
Equipment

- Arduino
- Breadboard
- LED
- Switch
- Resistor, $R = 270 \, \Omega$
- Some Wires

Breadboard

Make sure to place the Switch correctly on the Breadboard!

Avoid short circuit!
Wiring

Note! In this configuration, we use an internal "pull-up" resistor to prevent "short-circuiting".

Set pinMode like this: `pinMode(pin, INPUT_PULLUP);`

const int buttonPin = 7;
const int ledPin = 8;

int buttonState = 0;

void setup()
{
 pinMode(ledPin, OUTPUT);
 pinMode(buttonPin, INPUT_PULLUP);
}

void loop()
{
 buttonState = digitalRead(buttonPin);

 if (buttonState == HIGH)
 {
 digitalWrite(ledPin, HIGH);
 }
 else
 {
 digitalWrite(ledPin, LOW);
 }
}
Play and Explore
Potentiometer

A potentiometer is a simple knob that provides a variable resistance, which we can read into the Arduino board as an analog value.

Electrical symbol:
Equipment

- Arduino
- Breadboard
- Potentiometer
- LED
- Resistor, $R = 330\,\Omega$
- Wires (Jumper Wires)

Breadboard

Make sure to place the Potentiometer correctly on the Breadboard

short-circuiting!
Dimmer

In this example we will make a simple dimmer using a potentiometer that control the intensity of the light.

This is a typical example where a potentiometer is used. Everybody have a dimmer at home.

When the voltage in the circuit increases, the intensity of the LED will increase.

Note! No Arduino Program is needed in this example

TRY IT OUT!

Adjust the the dimmer (potentiometer) in order to increase or decrease the intensity of the light (LED)

Note! No Arduino Program is needed in this example
Play and Explore
Temperature

Introduction

In this example we will use a small temperature sensor to read the temperature in the room.

In this example we will use one of the "Analog In" ports on the Arduino board.
TMP36 Temperature Sensor

A Temperature sensor like TM36 use a solid-state technique to determine the temperature.

They use the fact as temperature increases, the voltage across a diode increases at a known rate.

https://learn.adafruit.com/tmp36-temperature-sensor

Temperature Sensor Datasheet

[http://no.rs-online.com/webdocs/14cd/0900766b814cd0a1.pdf]
Necessary Equipment

- Arduino
- Breadboard
- TMP36
- Wires (Jumper Wires)
analogRead

analogRead reads the value from a specific analog pin.

The Arduino UNO board has 6 analog pins (channels), and uses a 10-bit analog to digital converter.

Syntax:

```c
value = analogRead(analogPin);
```

value will then be between 0 and 1023

Example:

```c
int sensorPin = 0;
int sensorValue;

void setup()
{
}

void loop()
{
  sensorValue = analogRead(sensorPin);
}
```

https://www.arduino.cc/en/Reference/AnalogRead

Temperature conversion

We want to present the value from the sensor in degrees Celsius:

1. analogRead() gives a value between 0 and 1023
2. Then we convert this value to 0-5V
3. Finally, we convert to degrees Celsius using information from the Datasheet presented on the previous page
const int temperaturePin = 0;
float adcValue;
float voltage;
float degreesC;

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 adcValue = analogRead(temperaturePin);
 voltage = (adcValue*5)/1023;
 degreesC = 100*voltage - 50;
 Serial.print("ADC Value: ");
 Serial.print(adcValue);
 Serial.print(" voltage: ");
 Serial.print(voltage);
 Serial.print(" deg C: ");
 Serial.println(degreesC);
 delay(1000);
}
Example 6

Light Sensor
Introduction

In this example we will use a light sensor to measure the light intensity of the room.

If it's dark, we will turn on the light (LED)
If it's bright, we'll turn off the light (LED)

Light Sensor

Light sensor, Photocell (Photo resistor), LDR (light-dependent resistor)
A light sensor / photocell is a sensor used to detect light.
The resistance decreases with increasing light intensity (stronger light).
Necessary Equipment

- Arduino
- Breadboard
- Light Sensor
- LED
- Resistors, $R = 330\Omega$, $R = 10\ k\Omega$
- Wires (Jumper Wires)
int photocellPin = 2;
int photocellReading;

void setup(void)
{
 Serial.begin(9600);
}

void loop(void)
{
 photocellReading = analogRead(photocellPin);
 Serial.print("Analog reading = ");
 Serial.println(photocellReading);
 delay(1000);
}
int photocellPin = 0;
int ledPin = 2;
int photocellReading;
const float limit = 100;

void setup(void)
{
 Serial.begin(9600);
 pinMode(ledPin, OUTPUT);
}

void loop(void)
{
 photocellReading = analogRead(photocellPin);
 Serial.print("Analog reading = ");
 Serial.println(photocellReading);

 if (photocellReading < limit)
 {
 digitalWrite(ledPin, HIGH);
 }
 else
 {
 digitalWrite(ledPin, LOW);
 }
 delay(1000);
}
Thermistor
Introduction

In this example we will use a small thermistor to read the temperature in the room.

In this example we will use one of the "Analogue Inn" ports at Arduino.

Thermistor

A thermistor is an electronic component that changes resistance to temperature - so-called Resistance Temperature Detectors (RTD). It is often used as a temperature sensor.

Our Thermistor is a so-called NTC (Negative Temperature Coefficient). In a NTC Thermistor, resistance decreases as the temperature rises.

There is an non-linear relationship between resistance and excitement. To find the temperature we can use the following equation (Steinhart-Hart equation):

\[
\frac{1}{T} = A + B \ln(R) + C (\ln(R))^3
\]

where \(A, B, C \) are constants given below

\[
A = 0.001129148, B = 0.000234125 \text{ and } C = 8.76741E - 08
\]

[Wikipedia]
NTC Thermistor - Datasheet

Datasheet: https://www.elfadistrelec.no/no/ntc-motstand-kablet-10-kohm-vishay-ntclex100e3103jb0/p/16026041?q=160-26-041&page=1&origPos=1&origPageSize=50&simi=98.0

Technical data

- **Resistance @ 25°C**: 10 kΩ
- **Temperature range**: -40...+125 °C
- **Power max.**: 500 mW
- **Pitch**: 2.54 mm
- **Resistance tolerance**: ±5 %
- **$W_{25/100}$ value**: 3977 K
- **B value tolerance**: ±0.75 %
- **Thermal time constant**: 15 s

Example 7

Equipment

- Arduino
- Breadboard
- Thermistor
- LED
- Resistor 10 kΩ
- Wires (Jumper Wires)
The wiring is called a Voltage divider:

[https://en.wikipedia.org/wiki/Voltage_divider]
const int temperaturePin = 0;

void setup() {
 Serial.begin(9600);
}

void loop() {
 int temperature = getTemp();
 Serial.print("Temperature Value: ");
 Serial.print(temperature);
 Serial.println("\(^\circ\)C");
 delay(1000);
}

double getTemp() {
 // Inputs ADC Value from Thermistor and outputs Temperature in Celsius
 int RawADC = analogRead(temperaturePin);
 long Resistance;
 double Temp;
 // Assuming a 10k Thermistor. Calculation is actually: Resistance = (1024/ADC)
 Resistance = ((10240000 / RawADC) - 10000);
 // Utilizes the Steinhart-Hart Thermistor Equation:
 // Temperature in Kelvin = 1 / {A + B[ln(R)] + C[ln(R)]^3}
 // where A = 0.001129148, B = 0.000234125 and C = 8.76741E-08
 Temp = log(Resistance);
 Temp = 1 / (0.001129148 + (0.000234125 * Temp) + (0.0000000876741 * Temp * Temp * Temp));
 Temp = Temp - 273.15; // Convert Kelvin to Celsius
 return Temp; // Return the Temperature
}

Additional Exercises

Try out the following:

- Use both the TMP36 Temperature Sensor we used earlier and the Thermistor.

- Compare the values from the Thermistor with the TMP36 Temperature Sensor we used earlier. Display both values in the Serial Monitor.

- Draw circuit and wiring using the Fritzing software
Play and Explore

|Programming with Arduino|

|Slutt på eksemplet|
Play and Explore

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog
Programming with Arduino

Hans-Petter Halvorsen

https://www.halvorsen.blog