Arduino - MCP49xx (DAC)
DAC

• DAC – Digital to Analog Converter

• Why? Arduino UNO has no Analog Out Channels.
• We can then use the SPI bus (or I2C bus) available on the Arduino together with a commercial DAC chip in order to create our own Analog Out signal.
MCP49xx

• A product line with different DAC chips with different technical specifications

MCP4901: 8-Bit Voltage Output DAC
MCP4911: 10-Bit Voltage Output DAC
MCP4921: 12-Bit Voltage Output DAC
MCP4911
MCP4911

• The MCP4911 Microchip is a single channel 10-bit digital analog channel (DAC) with an external voltage reference.

• The communication between the MCP4911 and the Arduino microcontroller is done through the Serial Peripheral Interface (SPI) protocol.
MCP4911 Technical Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>10 Bit</td>
</tr>
<tr>
<td>Design</td>
<td>1 Channel</td>
</tr>
<tr>
<td>Interface</td>
<td>serial</td>
</tr>
<tr>
<td>Power supply</td>
<td>2.7...5.5 V</td>
</tr>
<tr>
<td>Package</td>
<td>DIL-8</td>
</tr>
<tr>
<td>Reference</td>
<td>External</td>
</tr>
<tr>
<td>Operating temperature max.</td>
<td>+125 °C</td>
</tr>
<tr>
<td>Operating temperature min.</td>
<td>-40 °C</td>
</tr>
<tr>
<td>Output</td>
<td>Voltage output</td>
</tr>
</tbody>
</table>

Datasheet: https://www.elfadistrelec.no/Web/Downloads/he/et/MCP4901_11_eng_datasheet.pdf
MCP4911

Where to buy?
Can be bought many places, e.g., ELFA DISTRELEC

SPI Bus

- SPI Master
 - SCLK
 - MOSI
 - MISO
 - SS

- SPI Slave
 - SCLK
 - MOSI
 - MISO
 - SS
Serial Peripheral Interface (SPI) is a synchronous serial data protocol used by microcontrollers for communicating with one or more peripheral devices quickly over short distances.

With an SPI connection there is always one master device (usually a microcontroller) which controls the peripheral devices.

SPI devices communicate in full duplex mode using a master-slave architecture with a single master.

The interface was developed by Motorola and has become a de facto standard.

Typical applications include sensors, Secure Digital cards, and liquid crystal displays (LCD).

SCLK : Serial Clock (output from master)
MOSI : Master Output, Slave Input (output from master)
MISO : Master Input, Slave Output (output from slave)
SS (or SC) : Slave Select (active low, output from master)

https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
Arduino is a SPI Master

The MCP4911 DAC chip is a SPI slave
Arduino SPI

- http://arduino.stackexchange.com/questions/16348/how-do-you-use.spi.on.an.arduino
- https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
SPI References

• SPI, Wikipedia:

• SPI, Sparkfun:
 https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
Arduino SPI Library

• https://www.arduino.cc/en/Reference/SPI
Arduino + MCP49xx

How?

1. We can use the Arduino SPI Library. A library that can be used together with kinds of devices supporting the SPI bus. https://www.arduino.cc/en/Reference/SPI

2. Or even easier, we can use the MCP49xx Arduino Library. Here we have a premade functions that are tailor-made for the MCP49xx chips. https://github.com/exscape/electronics/tree/master/Arduino/Libraries
<table>
<thead>
<tr>
<th>Arduino / Genuino Board</th>
<th>MOSI</th>
<th>MISO</th>
<th>SCK</th>
<th>SS (slave)</th>
<th>SS (master)</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uno or Duemilanove</td>
<td>11 or ICSP-4</td>
<td>12 or ICSP-1</td>
<td>13 or ICSP-3</td>
<td>10</td>
<td>-</td>
<td>5V</td>
</tr>
<tr>
<td>Mega1280 or Mega2560</td>
<td>51 or ICSP-4</td>
<td>50 or ICSP-1</td>
<td>52 or ICSP-3</td>
<td>53</td>
<td>-</td>
<td>5V</td>
</tr>
<tr>
<td>Leonardo</td>
<td>ICSP-4</td>
<td>ICSP-1</td>
<td>ICSP-3</td>
<td>-</td>
<td>-</td>
<td>5V</td>
</tr>
<tr>
<td>Due</td>
<td>ICSP-4</td>
<td>ICSP-1</td>
<td>ICSP-3</td>
<td>4, 10, 52</td>
<td>3,3V</td>
<td></td>
</tr>
<tr>
<td>Zero</td>
<td>ICSP-4</td>
<td>ICSP-1</td>
<td>ICSP-3</td>
<td>-</td>
<td>-</td>
<td>3,3V</td>
</tr>
<tr>
<td>101</td>
<td>11 or ICSP-4</td>
<td>12 or ICSP-1</td>
<td>13 or ICSP-3</td>
<td>10</td>
<td>10</td>
<td>3,3V</td>
</tr>
<tr>
<td>MKR1000</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>3,3V</td>
</tr>
</tbody>
</table>
The LDAC input can be used to select the device, and you could use a GPIO pin to turn the device on and off through this pin. In this example, we just tie it to ground so it is always selected and powered.

\[
V_{SS} = 5V \\
V_{DD} = 0V
\]
MCP49xx Arduino Library Example

```cpp
#include <SPI.h>
#include <DAC_MCP49xx.h>

// The Arduino pin used for the slave select / chip select
#define SS_PIN 10

//Set up the DAC
DAC_MCP49xx dac(DAC_MCP49xx::MCP4911, SS_PIN);

void setup()
{
}

void loop()
{
    // For MCP4911, use values below (but including) 1023 (10 bit)
    dac.output(255);
    delay(2500);

    dac.output(0);
    delay(2500);
}

https://github.com/exscape/electronics/tree/master/Arduino/Libraries
```
MCP49xx Arduino Library Example

```c
#include <SPI.h>           // Include the Arduino SPI Library
#include <DAC_MCP49xx.h>   // Include the MCP49xx Arduino Library

// The Arduino pin used for the slave select / chip select
#define SS_PIN 10

DAC_MCP49xx dac(DAC_MCP49xx::MCP4911, SS_PIN);

void setup()
{
    Serial.begin(9600);
}

void loop()
{
    double u; // Control Signal
    int aiPin = 0;
    int aiValue;

    for (int i=0; i<1023; i++)
    {
        u = i;
        dac.output(u);

        aiValue = analogRead(aiPin);
        Serial.print("AIValue=");
        Serial.println(aiValue);
        delay(1000);
    }
}
```

Connect the circuit (Arduino + MCP4911) on a breadboard. Use a multi-meter so see if you get the correct output signal.

On the Multimeter you should see the output slowly increasing from ~0V to ~5V with intervals of 1000ms.

You can also connect the output from the DAC to an Analog Input Pin on the Arduino. Write the value to the Serial Monitor.
References

• Arduino SPI Library: https://www.arduino.cc/en/Reference/SPI
• MCP49xx Arduino Library: https://github.com/exscape/electronics/tree/master/Arduino/Libraries
• SPI: http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
• SPI: https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: http://www.halvorsen.blog