University of
South-Eastern Norway

[
Py

An introduction to
Unified Modeling Language (UML)

[-"') -
\

/

. O
in > 0
Software Engineering 0700 O‘g!ﬁ'““’
S o7 o gy Mobiuye
o © O_QLAMGUAGE
O O g
o O I
9!
Nils-Olav Skeie

w_

Page 1

University of South-Eastern Norway February 16, 2021

% | L Collect Requirement

Users /
Hake a Use Case Diagram ‘

Make a Use Case Document

/ —
e Make Interaction Diagram
Analysis Model
Developers \

Design Model
-
A
% e
A,
%
Application

University of South-Eastern Norway February 16, 2021

Overview

Introduction,

— Software development process
Analysis,

— Use Case,

Design,

— Interaction diagrams,

— Class diagram,

Testing,

Conclusion.

Page 2

Prototyping .

s e \{OZ;E;‘;\"_. PG Requirements

WA

‘ ‘ Software Development Process
Waterfall 77\
.‘;.; 2 Test & Foaiash
o \. SR . Iterations; Analysis, Design, Coding, Testing.
(iR
i J . Coding;
- only a part of software development,
o —— Tm——— — the ea;iest part of_being a softwar(_a engineer,

3 o Py ® P > - Every line of code is a potential point of failure,

RUP Scrum Kanban Do Whatever

_Bou) 2 i . Developing software using UML;

- UML is only a tool!

— Used in a development process,

— Select the UML development tool; Problem
. Tool depend on the methodology, Domain
. Software or paper based,

. Use case / User story
- Main functions of the software

. Practice;
— UML and tool,
— “small steps”

Programming
Domain

University of South-Eastern Norway February 16, 2021 Page 3

Simula67: Ole-Johan Dahl and Kristen Nygaard

Person

Book

-name : String
-hirthDate : Date

-title : String
-authors : String| |

+getName() : String
+setMame(name) : void
+isBirthday() : boalean

+getTitle() : String
+getAuthors() @ String(]
+addAuther{name)

University of South-Eastern Norway

February 16, 2021

Object-oriented development

* Class;

— An abstract definition of some sort of function
in the problem domain,

— Consists of a name, data and methods.
* Object;
— Aninstance of a class in computer memory,
with valid data,

* OOAD;
— Using Object-Oriented methods for analyzing
and designing applications,
— Assigning responsibilities to each object,
— Let objects cooperate to solve a specific task
or a set of tasks.

Page 4

Business Area / Specification

Adjacent * Work / Business area
Work / systems — Business activities of the product owner,
business area — Activities that the owner wants to improve,

@ @ — Business use cases (BUC),
Business
@ events » Specification - USER

— An oral and/or written description of a challenge,

* Requirements - DEVELOPER

— Make a document describing the requirements for
the system,

— Testable.

University of South-Eastern Norway February 16, 2021 Page 5

Exercise: Business Area / BUC

— | * Software for a Washing Machine
— Specification?

— Business Use Cases?

— Requirements?

University of South-Eastern Norway February 16, 2021 Page 6

| Analysis
. Use case _ |
Requirements . >
diagram
Use case _
L document e Collect requirements,
Time * Make use case diagram,
’ * Make use case document,
. e Use case diagram,

K — Use case; main functions of the software,
— Actors; I/0O of the software,

Audience

v,
é\

Use case document,

i — Text description of each use case.

University of South-Eastern Norway February 16, 2021 Page 7

The Problems with our Requirements Practices

* We have trouble understanding Re q u i re m e nts

the requirements that we do
acquire from the customer

* We often record requirements in
a disorganized manner

* We spend far too little time
verifying what we do record

+ We allow change to control us,
rather than establishing

B oo o oo oo 4o oot ol ol oo oo

* Use the FURPS+ letters, make a text document;

— Fis Functionality;

* Main functions of the software, the use cases, starts with a

verb,
/ — U is Usability;

* How to interact with the software, human factors, help,
documentation,

Use — Ris Reliability;
Case . . Predictability, Accuracy, Mean time to failure,
— Pis Performance;

* Speed, Resource consumption, Throughput, Response
time,

Actors? — Sis Supportability;
* Testability, Adaptability, Maintainability, Configurability,
— + (extra)

* Implementation, licenses, administration, interface to
K external systems,

« Most importantly, we fail to
establish a solid foundation for
the system or software that the
user wants built

Result:

* Functional

e Non-Functional Requirements

University of South-Eastern Norway February 16, 2021 Page 8

Templates:

E-E UML Class Diagram
?.T UML Sequence Diagram

L]
w UML Use Case Diagra

ﬁ UML Activity Diagram
@E: UML Component Diagram

¥irg .
EI'—-I Layer Diagram

i. Directed Graph Document
B MadelingProject - Micrasaft Visus S
BT W BORT D G T

University of South-Eastern Norway

Description
A blank UML use case diagram

February 16, 2021

Use case diagram

* How software will fulfill the requirements of the external
actors,

* Consists of a set of actors and use cases,
* Actor

— ”something” requires a function or service of the
software,

— Often a person, hardware device, software function (OS)
or another computer system,

* Use case
— Main functions of the applications,
— The functions required to/from the actors,
— Use averb in the use case name,
— Functional section from the requirements,

— More details for each use case in a use case document.
Page 9

Exercise: Use case diagram

— |2 JEE i * Requirements?

* Main functions of software?

e Any actors?

— * Make a use case diagram.

University of South-Eastern Norway February 16, 2021 Page 10

Use case
document

=] S &7 s D b3

8
9
10
11
12

13

Fully dressed use case document

Use case section
Use case name
Scope
Level
Primary actor
Stakeholders and Interests
Preconditions
Success Guarantee

Main success scenario
Extensions

Speelal requirements
Technology list
Frequency of oceurrence

Mizcellaneous

University of South-Eastern Norway

Comment
Start with a verb
The system under design
“user goal” or “sub funetion”
The main user of the function
Who cares, and what do they want
What must be fulfill before starting
What must be fulfilled at & suecessful
completion
A typical zet of events
Alternative scenarios of suceess or failure
Related non-functional requirements
Different 1/0 methods and data formats
Investigation, testing and timing of
implementation
Such as open lzzues

February 16, 2021

Use case document (iterations)

* Select the most important use case,
* Use case documents (FDUCD):
— Describe in a text document,

— Brief, Casual, or Fully dressed.

— Different templates available,

Preconditions,

Success Guarantee,

Main Success Scenario (basic flow),
— Actor events.

Extensions (conditional/branches),
— Actor events.

— Important sections; (6, 7) 8, 9 and 12.

Page 11

Exercise: Use case document

— B * Select the most important use case,

e Describe the use case in more detail!

* Main success scenario / Extensions

University of South-Eastern Norway February 16, 2021 Page 12

. Use case R |
Requirements . >
diagram
Use case
document
Time

Documentations — part of:
* (SRS: Software Requirements & Specifications)
* SRD: Software Requirements and Design

University of South-Eastern Norway

February 16, 2021

»

Analysis: Documents

* Specification and Requirements,
— FURPSH,
— Text,
e Use case diagram,
— UML,
— Main functions and actors,
* Use case document,
— Text,
— Description of each use case,

— One document for each use case.

Page 13

Analysis to Design

Namet#l

Attributes * Design:
Methods — How the software is going to do the work,

— Structure,
* Classes and objects,

o
M
(%)

°
@]
S
L.
=
(4

<

Name#?2

— Give responsibility to objects,
Attributes

Methods e Use design patterns.

University of South-Eastern Norway February 16, 2021 Page 14

Request Responsible
Object Object 1

Responsible
Object 3

Responsible
Object 2
Responsible Responsible
Object 4 Object 5

Object Des gn

Roles, Responsibilities. and Collaborations

University of South-Eastern Norway February 16, 2021

Responsible
Object 6

Giving responsibility to objects

Two types of responsibilities (knowing/Doing):
* knowing

1. private encapsulated data,

2. related objects,

3. “things” it can derive or calculate

1. doing something itself (creating an object or
doing a calculation),

2. initiating action in other objects,

3. controlling and coordinating activities in
other objects.

Page 15

Design tasks:
1. Select the most important use
case,

2. Select a controller class for
this use case,

3. Make interaction diagrams for
the use case,

4. Make a class and object
diagram.

University of South-Eastern Norway February 16, 2021

Design Model

* Describe the scenario of a use case with
collaborating objects,

* The system operation starts with a controller
object,

e Use UML diagrams
— interaction diagrams,
— class diagrams,

Page 16

Main OOADP Intro

1 : make_presentation()

2: txt := get_uml_infi()

UML tool

Displa

UML WEB GRASP Book

: txt := get_grasp_info()

5 : make_demo()

:I 4 : combine_info()

IJY

6 : demol := analysis()

7 : demo2 := design()

8 : presentation()

9 : show(analysis)

. . |

10 : show(demo1)

11 : show(design)

12 : show(demo2)

University of South-Eastern Norway

February 16, 2021

P B |

Interaction diagrams
- Sequence diagram

e Shows the sequence of the messages in time,
Simple notation,

* Takes a lot of horizontal space,
* Notation ("UML” Coding):
— No answer: message()
— With answer: ans:=message()
— Condition: [x<10]:ans:=message()
— Loop: *[i=1..n]: ans:=message()
* Use several objects for cooperation,

Do not include the details, focus on the overview

Page 17

Exercise: Sequence diagram

ERES * Washing cloth at 40 deg. C

University of South-Eastern Norway February 16, 2021 Page 18

UML Course

University of South-Eastern Norway

+ixt /
+demol

+demo2 . |

+make_presentation()
+make_demo()
+presentation()
+combine_info()

Namettl Name#2
Attributes Attributes
Methods Methods

UML WEB

+get_uml_info()

GRASP book

+get_grasp_info()

Display

+show()

February 16, 2021

UML tool

+analysis()
+design()

Class and Object diagrams

* Class and Object diagrams from the
interaction diagrams,

— One interaction diagram for each use case,
— Common class and object diagrams.

* Get all the information from the
interaction diagrams,

— Class diagram and object diagram with
names, attributes, and methods

Page 19

L

Class R Object
Interaction | [diagram | diagram
diagram
Time
FDUCD SEQ.D
T T
REQ ucb | | CDh
| |
FDUCD SEQ.D

Documentations — part of:

» (SDD: Software Desigh Document)
* SRD: Software Requirements and Design

University of South-Eastern Norway

February 16, 2021

Design: Documents

* Interaction diagram,
— Sequence diagram, focus on time,
— One diagram for each use case document,
— Dynamic model of your software,
e Class diagram,
— Static model of your software,
— One common diagram,
* Object diagram,
— Static model of your application,
— One common diagram.

Page 20

Testing

* More than 50% of errors may arise before coding,

Testing in each iteration,

Deploy an early version for the customer,

‘ ‘ Software Testing
& 1 Life cycle
¥ @ For testing:
\) — Requirements,
;«
\ I Y
g

— Use Case Diagram,

— Use Case Documents (Fully Dressed Use Case
Document),

*«
CT

.

»‘

Most of the test documents produced before coding.

University of South-Eastern Norway February 16, 2021 Page 21

Sr.

Sample Template for a Unit Test Plan|

Requirements

Typical Components

Detailed Description

1)

Introduction

a) Test Strategy and
Approach

b) Test Scope

c) Test Assumptions

2)

Walkthrough
(Static Testing)

a) Defects Discovered and
Corrected

b) Improvement ldeas

c) Structured Programming
Compliance

d) Language Standards

e) Development
Documentation Standards

3)

Test Cases
(Dynamic
Testing)

a) Input Test Data

by Inftial Condfions

c) Expected Results

d) Test Log Status

4

Environment
Requirements

a) Test Strategy and
Approach

b) Platform

c) Libraries

d) Tools

e) Test Procedures

f) Status Reporting

hittp: MAnenew softwaretestinggenius.com

University of South-Eastern Norway

February 16, 2021

Testing — Test Plan

* Based on requirements,

— Responsibility. [

e Test plan document;
— System description,
— Test cases,

Pass Fail / Not pass
description description

! |

* Integrated test options;
— Simulator,

— Methods.
Simulator . System

Page 22

F—=_ |
/ | Conclusions
e 7

Spesification

%,_/

BN % — Collect requirements,
Analysis Model

* Use a development process
* Use time in the analysis phase,

benstoners — Make use case diagram and use case
\ documents,
% * Design phase,
A — Assign responsibility to objects,

— Sequence diagram; dynamic information,
— Class diagram; static abstract information,

% — Object diagram; static runtime information,
Application

_ — Testing is based on requirements.
UML: Use Case diagram

University of South-Eastern Norway February 16, 2021 Page 23

