MATLAB Examples
Interpolation and Curve Fitting

Hans-Petter Halvorsen
Interpolation

Interpolation is used to estimate data points between two known points. The most common interpolation technique is Linear Interpolation.
Interpolation

• Interpolation is used to estimate data points between two known points. The most common interpolation technique is Linear Interpolation.

• In MATLAB we can use the \textit{interp1()} function.

• The default is linear interpolation, but there are other types available, such as:
 – linear
 – nearest
 – spline
 – cubic
 – etc.

• Type “help interp1” in order to read more about the different options.
Given the following Data Points:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

(Logged Data from a given Process)

\[
x = 0.5;
y = [15, 10, 9, 6, 2, 0];
\]

\[
\text{plot}(x,y,'o')
\]

\[
\text{grid}
\]

Problem: Assume we want to find the interpolated value for, e.g., \(x = 3.5 \)
Interpolation

We can use one of the built-in Interpolation functions in MATLAB:

```matlab
x=0:5;
y=[15, 10, 9, 6, 2, 0];
plot(x,y,'-o')
grid on
new_x=3.5;
new_y = interp1(x,y,new_x)
```

MATLAB gives us the answer 4. From the plot we see this is a good guess:
Interpolation

Given the following data:

<table>
<thead>
<tr>
<th>Temperature, T [°C]</th>
<th>Energy, u [KJ/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2506.7</td>
</tr>
<tr>
<td>150</td>
<td>2582.8</td>
</tr>
<tr>
<td>200</td>
<td>2658.1</td>
</tr>
<tr>
<td>250</td>
<td>2733.7</td>
</tr>
<tr>
<td>300</td>
<td>2810.4</td>
</tr>
<tr>
<td>400</td>
<td>2967.9</td>
</tr>
<tr>
<td>500</td>
<td>3131.6</td>
</tr>
</tbody>
</table>

- Plot u versus T.
- Find the interpolated data and plot it in the same graph.
- Test out different interpolation types (spline, cubic).
- What is the interpolated value for $u = 2680.78$ KJ/kg?
clear
clc

T = [100, 150, 200, 250, 300, 400, 500];
u=[2506.7, 2582.8, 2658.1, 2733.7, 2810.4, 2967.9, 3131.6];

figure(1)
plot(u,T, '-o')

% Find interpolated value for u=2680.78
new_u=2680.78;
interp1(u, T, new_u)

%Spline
new_u = linspace(2500,3200,length(u));
new_T = interp1(u, T, new_u, 'spline');
figure(2)
plot(u, T, new_u, new_T, '-o')
\[T = [100, 150, 200, 250, 300, 400, 500]; \]
\[u = [2506.7, 2582.8, 2658.1, 2733.7, 2810.4, 2967.9, 3131.6]; \]

```matlab
figure(1)
plot(u, T, 'o')
```

or:

```matlab
plot(u, T, '-o')
```
% Find interpolated value for u=2680.78
new_u=2680.78;
interp1(u, T, new_u)

The interpolated value for u=2680.78 KJ/kg is:
ans =
 215.0000

i.e, for \(u = 2680.76 \) we get \(T = 215 \)

%Spline
new_u = linspace(2500,3200,length(u));
new_T = interp1(u, T, new_u, 'spline');
figure(2)
plot(u,T, new_u, new_T, '-o')

For ‘spline’/’cubic’ we get almost the same. This is because the points listed above are quite linear in their nature.
Curve Fitting

• In the previous section we found interpolated points, i.e., we found values between the measured points using the interpolation technique.
• It would be more convenient to model the data as a mathematical function $y = f(x)$.
• Then we can easily calculate any data we want based on this model.
Curve Fitting

• MATLAB has built-in curve fitting functions that allows us to create empiric data model.
• It is important to have in mind that these models are good only in the region we have collected data.
• Here are some of the functions available in MATLAB used for curve fitting:
 - \texttt{polyfit()}
 - \texttt{polyval()}
• These techniques use a polynomial of degree N that fits the data Y best in a least-squares sense.
Regression Models

Linear Regression:

\[y(x) = ax + b \]

Polynomial Regression:

\[y(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n \]

1.order (linear):

\[y(x) = ax + b \]

2.order:

\[y(x) = ax^2 + bx + c \]

etc.
Linear Regression

Given the following data:

<table>
<thead>
<tr>
<th>Temperature, T [°C]</th>
<th>Energy, u [KJ/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2506.7</td>
</tr>
<tr>
<td>150</td>
<td>2582.8</td>
</tr>
<tr>
<td>200</td>
<td>2658.1</td>
</tr>
<tr>
<td>250</td>
<td>2733.7</td>
</tr>
<tr>
<td>300</td>
<td>2810.4</td>
</tr>
<tr>
<td>400</td>
<td>2967.9</td>
</tr>
<tr>
<td>500</td>
<td>3131.6</td>
</tr>
</tbody>
</table>

Plot u versus T.

Find the linear regression model from the data

$$y = ax + b$$

Plot it in the same graph.
\[T = [100, 150, 200, 250, 300, 400, 500] ; \]
\[u = [2506.7, 2582.8, 2658.1, 2733.7, 2810.4, 2967.9, 3131.6] ; \]
\[n = 1 ; \% \text{1.order polynomial (linear regression)} \]
\[p = \text{polyfit}(u, T, n) ; \]
\[a = p(1) \]
\[b = p(2) \]
\[x = u ; \]
\[ymodel = a \times x + b ; \]
\[\text{plot}(u, T, 'o', u, ymodel) \]
\[a = \]
\[0.6415 \]
\[b = \]
\[-1.5057 \times 10^3 \]
\[\text{i.e, we get a polynomial } p = [0.6, -1.5 \times 10^3] \]
Given the following data:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>40</td>
<td>82</td>
</tr>
<tr>
<td>50</td>
<td>111</td>
</tr>
<tr>
<td>60</td>
<td>140</td>
</tr>
<tr>
<td>70</td>
<td>167</td>
</tr>
<tr>
<td>80</td>
<td>198</td>
</tr>
<tr>
<td>90</td>
<td>200</td>
</tr>
<tr>
<td>100</td>
<td>220</td>
</tr>
</tbody>
</table>

In polynomial regression we will find the following model:

\[y(x) = a_0x^n + a_1x^{n-1} + \cdots + a_{n-1}x + a_n \]

- We will use the **polyfit** and **polyval** functions in MATLAB and compare the models using different orders of the polynomial.
- We will use subplots then add titles, etc.
clear, clc

x=[10, 20, 30, 40, 50, 60, 70, 80, 90, 100];
y=[23, 45, 60, 82, 111, 140, 167, 198, 200, 220];

for n=2:5
 p=polyfit(x,y,n);
 ymodel=polyval(p,x);
 subplot(2,2,n-1)
 plot(x,y,'o',x,ymodel)
 title(sprintf('Model of order %d', n));
end
Model Fitting

Given the following data:

<table>
<thead>
<tr>
<th>Height, h[ft]</th>
<th>Flow, f[ft^3/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.7</td>
<td>2.6</td>
</tr>
<tr>
<td>1.95</td>
<td>3.6</td>
</tr>
<tr>
<td>2.60</td>
<td>4.03</td>
</tr>
<tr>
<td>2.92</td>
<td>6.45</td>
</tr>
<tr>
<td>4.04</td>
<td>11.22</td>
</tr>
<tr>
<td>5.24</td>
<td>30.61</td>
</tr>
</tbody>
</table>

• We will create a 1. (linear), 2. (quadratic) and 3. order (cubic) model.
• Which gives the best model? We will plot the result in the same plot and compare them.
• We will add xlabel, ylabel, title and a legend to the plot and use different line styles so the user can easily see the difference.
clear, clc
% Real Data
height = [0, 1.7, 1.95, 2.60, 2.92, 4.04, 5.24];
flow = [0, 2.6, 3.6, 4.03, 6.45, 11.22, 30.61];

new_height = 0:0.5:6; % generating new height values used to test the model

%linear-------------------------
polyorder = 1; %linear
p1 = polyfit(height, flow, polyorder) % 1.order model
new_flow1 = polyval(p1,new_height); % We use the model to find new flow values

%quadratic-----------------------
polyorder = 2; %quadratic
p2 = polyfit(height, flow, polyorder) % 2.order model
new_flow2 = polyval(p2,new_height); % We use the model to find new flow values

%cubic------------------------
polyorder = 3; %cubic
p3 = polyfit(height, flow, polyorder) % 3.order model
new_flow3 = polyval(p3,new_height); % We use the model to find new flow values

%Plotting
%We plot the original data together with the model found for comparison
plot(height, flow, 'o', new_height, new_flow1, new_height, new_flow2, new_height, new_flow3)
title('Model fitting')
xlabel('height')
ylabel('flow')
legend('real data', 'linear model', 'quadratic model', 'cubic model')
The result becomes:

\[
p_1 = \begin{pmatrix} 5.3862 \ -5.8380 \end{pmatrix}
\]

\[
p_2 = \begin{pmatrix} 1.4982 \ -2.5990 \ 1.1350 \end{pmatrix}
\]

\[
p_3 = \begin{pmatrix} 0.5378 \ -2.6501 \ 4.9412 \ -0.1001 \end{pmatrix}
\]

Where \(p_1 \) is the linear model (1.order), \(p_2 \) is the quadratic model (2.order) and \(p_3 \) is the cubic model (3.order).

This gives:

1. order model:

\[p_1 = a_0 x + a_1 = 5.4x - 5.8 \]

2. order model:

\[p_2 = a_0 x^2 + a_1 x + a_2 = 1.5x^2 - 2.6x + 1.1 \]

3. order model:

\[p_3 = a_0 x^3 + a_1 x^2 + a_2 x + a_3 = 0.5x^3 - 2.7x^2 + 4.9x - 0.1 \]
Hans-Petter Halvorsen, M.Sc.

University College of Southeast Norway

www.usn.no

E-mail: hans.p.halvorsen@hit.no

Blog: http://home.hit.no/~hansha/