
Faculty of
Technology, Natural Sciences and Maritime Sciences

(TNM)

Department of
Electrical Engineering, Information Technology and

Cybernetics (EIK)

Introduction to data communication with C# programming

Nils-Olav Skeie

September 27, 2021

Contents

Preface v

Nomenclature vii

1 Data communication in C# 1
1.1 Introduction . 1
1.2 Serial port data communication . 1

1.2.1 Introduction . 1
1.2.2 Physical layer . 2
1.2.3 Asynchronous serial communication . 2
1.2.4 Communication protocols . 3

1.3 Serial port programming in C# . 10
1.3.1 Introduction . 10
1.3.2 Three tier architecture . 11
1.3.3 Serial port library . 12
1.3.4 Terminal console application . 16

1.4 Network communication programming in C# . 20
1.4.1 Introduction . 20
1.4.2 OSI model . 20
1.4.3 TCP/IP protocol . 21
1.4.4 Socket programming in C# . 22
1.4.5 Console test application . 23
1.4.6 GUI Chat application . 29
1.4.7 Security . 37

Bibliography 39

Index 41

iii

Preface

This document gives an introduction to programming in C# for serial and network communication.
This introduction will cover serial data communication, a few serial communication protocols and im-
plementation in C# using a terminal console program. This introduction will also cover basic network
communication with the TCP/IP protocol using sockets and implementation of a GUI chat application
in C#. This is however not an introduction to neither data communication nor programming, but a
combination of these two subjects. It is assumed that the reader has basic understanding of both data
communication and programming before reading this document. The versions of this document are:

Revision Changes / Extensions Who Date
0.1 First version for some BSc and MSc courses at USN/Porsgrunn NOS AUG−20
0.2 Minor updates and fixes NOS SEP-21

v

Nomenclature

This section gives a list of abbreviations used in this lecture note.

.

Abbreviation Meaning/Explanation
CAN Controller Area Network
EOBD European On-Board Diagnostics
FIFO First In First Out
GPS Global Position System
M2M Machine to machine
MQTT Message Queuing Telemetry Transport
NMEA National Marine Electronics Association
OBD On-Board Diagnostics
OSI Open System Interconnection
Rx Receive data
TCP/IP Transport Control Protocol / Internet Protocol
Tx Transmit data
UART Universal asynchronous receiver and transmitter
USB Universal Serial Bus

vii

Chapter 1

Data communication in C#

1.1 Introduction

The most used method for external communication with a computer is by serial communication. Serial
communication means that there is a communication media where the data is transformed in serial form,
each bit in every byte is transformed one by one on a single communication medium. The medium can
be an electrical wire, in the air (wireless) or an optical cable (using light), and a protocol is needed to
describe how the information is transformed and coded on the medium. A protocol contains a set of
rules describing how to convert the information in the data between any applications and the commu-
nication media. USB, TCP/IP, MQTT, RS-485, CAN and RS-232C are a few of the communication
protocols used where a protocol description is documenting the structure of the data and the usage of the
communication media. This section is an introduction for using C# for accessing serial communication
functions on a computer, for external communication with other communication devices, based on some
sort of protocols.

1.2 Serial port data communication

1.2.1 Introduction

Data communication is important for communication between computers, for stand-alone devices like a
GPS device, on local area network (LAN) and on internet. Every time you want to send or receive an
online message, send or receive a SMS (short message service) send or receive an email, access a web page
on internet or download any information from internet, data communication is needed. If you connect a
device to your computer, like a GPS device, an USB memory stick, a mobile phone or a camera, data
communication is also needed. A computer with external communication capabilities is often referred to
as a node and a set of nodes need to use the same structure of the data and the communication media
to be able to communicate. However, this structure can be very complex, as shown in Figure 1.1.
This structure is defined by a protocol document describing the details for how to use the com-

munication media and how to interpret the data information. The protocol is a set of rules trying to
structure sending and receiving of information. This can be compared with two humans that are trying

Figure 1.1: An overview of the challenges when two or more nodes (computers) need to communicate
using a communication media.

1

Figure 1.2: Compare a protocol with the situation where two people should be able to talk with and
understand each other.

Figure 1.3: Asyncronous transmission using a start and stop bit for syncronization (copy from Net-
workEncyclopedia.com / Aug-20).

to communicate, they also need to have a set of rules to understand each other like using a language that
both understand, not talk at the same time, and not being too far away from each other, as indicated in
Figure 1.2.
Since data communication contains many different states and rules, the Open System Interconnection

reference model (OSI model) (Houldsworth 1990), (Levermore 2000), (Stevens 1990), (Stallings 2001) is
often used to better structure the situation. The OSI model is a seven layer model defining different
types of functionality that must be fulfilled by the protocol. The lowest layer in the OSI model is the
physical layer describing the functionality for a physical connection between two or more nodes. This
layer is describing the main functionality of the serial port communication. This connection may also be
named M2M communication in some literature, short for machine to machine communication.

1.2.2 Physical layer

The physical layer may be wired, optical or wireless (Stallings 2001), and describes how to connect to
the physical communication media, how to transfer the data on the communication media and how to
handle the data flow on the communication media. The wired connection will be either parallel or serial
communication. Parallel is using one wire for each bit, while serial is handling each bit in time slots
on the same wire. Parallel is faster but serial is cheaper and can be used over longer distances. So
serial communication is used most. Optical is using light (laser) as the communication carrier instead
of electrical current as for a wired connection. Wireless can be protocols like Bluetooth and WiFi
(Stallings 2001), using radio frequencies as the communication carrier. This chapter will focus further
on wired connections only, for serial data communication.

1.2.3 Asynchronous serial communication

Serial data communication will be either synchronous or asynchronous communication where asynchro-
nous is most used. In synchronous communication there will be a continuos stream of data bits and an
external synchronization signal is needed to synchronize the sender and the receiver. This synchroniza-
tion signal must use an extra wire. The asynchronous communication will divide the data stream into
characters and add synchronization bits for each of the characters in the data stream. No external syn-
chronization signal is needed however the transmission will take a little more time as the synchronization
bits must be transmitted along with the data bits. Figure 1.3 shows asynchronous communication where
each byte has a start bit and a stop bit for synchronization between the transmitter (sender) and the
receiver. Each byte in this figure consists of eight bits.
The RS-232C, RS-422 and RS-485 protocols are some examples of asynchronous protocols used a

lot on computer systems, and these protocols need a set of communication parameters to be configured

CHAPTER 1. DATA COMMUNICATION IN C# 3

Figure 1.4: The transmiision of the bits in asyncronous serial communication. It will start with a start
bit, then the data bits, and a stop bit at the end.

before starting transferring the data stream. RS-232C has normally only one transmitter node and one
receiver node, RS-422 has normally one transmitter node and several receiver node, while RS-485 has
normally several both transmitter and receiving nodes.
The number of data bits and stop bits can be configured while one start bit is fixed. The communi-

cation parameters that can be configured are:

• Baud rate; defining the transmission speed, the number of bits per. second. The baud rate is
normally either 300, 600, 1200, 2400, 4800, 9600, 19200, 38400 or 115200.

• Data bits; defining the number of bits in each character to transmit. The number of data bits are
either 5, 6, 7 or 8.

• Parity check; single bit summing up as either None, Even or Odd parity. Even or odd parity will
add an extra bit to the data stream, before the stop bit.

• Stop bits; number of bits after the data bits and any parity bit. The number of stop bits are either
1, 1.5 or 2.

The start bit is used for synchronization as the receiver(s) do not know when any node is transmitting.
The start bit is normally changing the electrical carrier voltage level from high to low indicating that
new data will be transmitted. The start bit will also synchronize the baud rate system for the receiver
as the baud rate system is used to define when a new bit is to be transmitted and when the receiver can
read this next bit. Figure 1.4 shows the message package, the transmission of one byte, starting with a
start bit and ending with the stop bit. The figure also shows when the receiver should check for a new
bit, indicated by the vertical green arrows.
The parity bit will be added after the data bits, and before the stop bit(s) if even or odd parity is

configured. The extra bit will be 0 or 1 to fulfill the parity configuration. If the data bits are 1101 1111,
as shown as one byte in Figure 1.4 will the number of “1”be 7, an odd number of bits. If odd parity
is selected will the extra parity bit be “0”, or if even parity is selected will the extra parity bit be “1”.
Parity bit checking can be useful if communication in a noise environment, or over a long distance.
The conversion between the data byte and the data bits, and including communication parameters,

is handled by a hardware chip named universal asynchronous receiver and transmitter (UART). The
UART will control the baud rate, the number of data bits, any optional parity check, and include the
start and stop bits. The frame is the data bits and is part of the total package as shown in figure 1.4.
The UART will handle any framing errors meaning any errors of the number of data bits. The reasons
can be configuration of wrong baudrate or wrong number of data bits. The UART also contains a first in
first out buffer (FIFO) for the receiving part, for example 16 bytes, in addition to the parity and framing
error checking. The FIFO buffer allows the serial port to receive more characters before any software
driver needs to read these characters. The UART is shown in figure 1.5 where UART1 is part of the
transmitter node transmitting a character from the TX (transmitter) part to the RX (receiver) part of
the receiver node. So UART 2 is part of the receiver node.
The control of the UART is handled by the drivers of the operating system, and most programming

languages have ready made libraries for communication with these drivers. This document will explore
the serial port library in C#.

1.2.4 Communication protocols

Before looking into the serial port programming, two asynchronous serial protocols will be exploited,
that will be used as examples in the programming section. These protocols are the National Marine
Electronics Association (NMEA) 183 protocol that is often used for GPS (Global Position System), and
the on-board diagnostics (OBD) used as a network inside most cars produced after 2000. The NMEA

Figure 1.5: The UART hardware chips converting between data bytes and data bits for asyncronous
communication between two nodes.

Figure 1.6: One version of an USB to serial port adapter, including the pins for a 9 pins serial port
connector. The connector and pinning is defined in the RS-232C protocol.

183 is a one way protocol only so the transmitter is cyclic transmitting all necessary information and any
receiver needs to listen to the information and store only the information needed. So only one node can
be the transmitter, the rest of the nodes will be receivers. The OBD protocol is a two-way protocol where
all the nodes can be either a transmitter or a receiver. Any node can send a request on the network and
the node with the information will answer within a specific time frame. However, before digging into
these two different protocols, a short introduction on connecting to the serial port is needed.

Serial port

Older computers had one or several RS−232C or RS−485 ports while modern computers only have USB
ports. However, many versions of USB to serial port adapters exist, one of these is shown in Figure 1.6.
The three most important pins of the serial port connector is the receive data (RD) pin (rx: pin 2),

transmit data (TD) pin (tx: pin 3) and ground (GND) pin (pin 5). Pin 2 is the Rx (receive) connection
and pin 3 is the Tx (Transmit) connection as shown in Figure 1.5. This is shown for 9 pins connectors,
but there exists 25 pins connectors as well. One way of testing such an adapter is by interconnecting pin
2 and pin 3 and make a test option in the software just to transmit a dummy text and check receiving
the same text. This test option is often named loopback testing, and will test both the hardware and
the software for that node.

NMEA 183 protocol

The NMEA 183 protocol is a cyclic protocol where the transmitting node is sending a set of messages
in a cyclic manner, and is the protocol used for many GPS devices. One is these devices is the Pharos
iGPS−180, shown in Figure 1.7. This is a standalone device, the power requirement is 5V (normally
from the USB port) and the protocol is based on RS-232C, the baud rate is 4800, 8 data bits, no parity
and one stop bit.
The GPS device has an integrated antenna and is using the NMEA protocol for transmitting the

GPS information. The NMEA protocol messages have the following format:

CHAPTER 1. DATA COMMUNICATION IN C# 5

Figure 1.7: GPS devices are hardware devices available in many sizes and forms. The Pharos iGPS-180
is the device used for collecting the data in this document. The figure shows two such devices, one with
an USB connection and one with just power and communication connection.

Figure 1.8: An example of some of the NMEA commands like GPGGA, GPGSV, GPRMC and GPGSA.

$ Command , Param#1 , Param#2 , .., Param#N * ChkSum

where all the fields are based on printable ASCII characters. The $ indicates the start of a new
message, the Command indicates the type and number of parameters (1 to N), comma is the standard
field separator, and * (asterisk) indicates the checksum of the message. The asterisk is immediately
followed by a checksum represented as a two-digit hexadecimal number, indicating the end of one NMEA
message. The checksum is the bitwise exclusive OR of the ASCII codes of all characters between the $
and *. The message ends with the <CR><LF> codes. An example of some of the NMEA messages is
shown in Figure 1.8.
Figure 1.8 shows one of the challenges with asynchronous serial communication as one and one

character is sent. The figure shows that the receive function has been used four times, Rx[91] to Rx[94].
The first read function, Rx[91], contains three NMEA messages. However, only the first part of the
last NMEA message is read, the $GPGSV command. This is quite common when reading asynchronous
serial communication protocols and the software must include logic to merge the last part of this read
function and the first part of the next read function. As shown in the figure, the NMEA messages start
with the $ sign and end with checksum field starting with the * sign where each field is separated by the
, sign.
The most used commands for GPS information in the NMEA protocol are, where some of them are

also shown in Figure 1.8:

Figure 1.9: An example of the GPGGA command with valid information, at a location at Stathelle in
Norway.

Command Description Fields
GPGGA Global Positioning System Fix Data 10 (12)
GPGLL Geographic Latitude and Longitude 4
GPGSA Satellite status 6
GPGSV Satellites in view 7
GPRMC Recommended Minimum sentence C 8
GPVTG Track made good and ground speed 4

The first two characters of the command field defines the sending device and the last characters are
actually the NMEA command. The sending device can be either GP, GL or GN. The NMEA GGA
command (GPGGA) can be used to receive the location of a moving device like a car. Figure 1.8 shows
a GGA command, but before the GPS device has received data from enough satellites, the contents is
therefor marked as invalid (field #6 is 0). Also note that one of the GGA messages are broken into two
parts (in Rx[93] and Rx[94]), and must be merged into one message by logic in the software. The GPS
device will use some time to get information from a set of satellites before valid information can be added
to these messages. Figures 1.9 shows a message (Rx[7762]) with valid information for a GGA command
(field #6 is 1).
The GGA command description in the NMEA protocol documentation has the following information

for the different fields (in the message):

Field Description Example
1 UTC time from satellite 20:40:06 UTC
2 Latitude 5901.3925
3 Latitude direction N
4 Longitude 942.7862
5 Longitude direction E
6 GPS quality: 0=invalid, 1=GPS fix, 2=DGPS fix (0-8) 1
7 Number of satellites 05
8 Horizontal dilution of position 1.7
9 Altitude, Meters, above mean sea level 132.0 M
10 Height of geoid (mean sea level) above WGS84 ellipsoid
11 Empty field, time of seconds since last DGPS update
12 Empty field, DGPS station ID number

checksum after the * sign 02

The example column (to the right) contains the values from Figures 1.9. The first field, after the
command, is an accurate UTC time showing that the information was received at 20:40:06 UTC time,
being 22:40:06 local time (Norwegian summer time). The format of latitude and longitude coordinates
in the NMEA format is (d)ddmm.mmmm where d=degrees and m=minutes. The degree part can be
calculated as an integer by dividing with 100, and minutes part by dividing the rest with 60. The GPS
latitude position based on the values from the example column will be:

5901.3925/100 = 59

1.3925/60 = 0.023208 (1.1)

and the GPS longitude position will be:

942.7862/100 = 9

42.7862/60 = 0.713103 (1.2)

CHAPTER 1. DATA COMMUNICATION IN C# 7

Figure 1.10: A map of the Grenland area in Norway, with the Porsgrunn, Brevik and Stathelle cities.
The blue mark is the location of the GPS device at Stathelle, with the position on top of the map.

The direction factor for the latitude position is N=+1 and S=−1, and the direction factor for the
longitude position E=+1 and W=−1. The address position for the GPS device is shown at the top of
the map in Figure 1.10 with the longitude position = 9.713180 and the latitude position = 59.023047,
very close to the position received from the GPS device. These positions are:

Type Latitude Longitude
Map 59.023047 9.713180
GPS 59.023208 9.713103

The deviation is due to that the position in Figure 1.10 is based on a street address while the GPS
device has a specific position within that address area. Older GPS devices, like this device, have an
accuracy of about 5 m while newer GPS devices (newer than 2018) may have an accuracy of about
30 cm. A GPS device can then be used to receive and store the position of a moving object, like a car.
GPS devices using the NMEA protocol has either a serial port or an USB port for connection to the

computer, and the serial port (COM port) library can be used in C#. To get more information for a
specific moving object, other protocols must be used. The OBD protocol is such a protocol for a car.

OBD-2 / EODB protocol

The On-Board Diagnostic (OBD-2 or OBD-II) standard is a requirement for all cars sold in the United
States from 1996 and is a protocol for a network of sensors, actuators and controllers inside cars. Eu-
ropean On-Board Diagnostics (EOBD) is the European equivalent of the US OBD II standard, which
applies to petrol cars sold in Europe from 2001 (and diesel cars three years later). Cars are using the
Controller Area Network (CAN bus) to let microcontrollers and devices to communicate without the
need for a server, so the CAN bus is the local area network (LAN) for all the devices installed in a mod-
ern car. The OBD protocol is defining the connection port, the signals and the commands. A modern
car includes an industrial control system with several distributed control systems like engine controller,
braking system (ABS) controller, transmission controller, suspension controller and air conditioner con-
troller to mention some. One possible option for an external communication with this network (LAN) is
by using the OBD port.
The CAN protocol is a complex protocol that can be hard to implement in software. A better option

is to use the ELM327 interface which is a protocol converter converting between the CAN commands and
type of Attention (AT) commands. AT commands is normally used for communication with modems

Figure 1.11: The OBD connector, and an example of the ELM327 interface.

where the commands normally start with AT. The ELM327 implementation has customized a set of
these commands (Elm 2016). The OBD port and the ELM327 interface is shown in Figure 1.11.
The ELM327 interface can connect to a computer using either USB, Bluetooth or WiFi connection1 .

The easiest way is using an USB connection as this connection can be used as a serial port (COM port) in
C#, just like the NMEA protocol. Unlike the NMEA protocol, the OBD protocol is a two-way protocol
meaning that the software must first send a request for a specific information, wait for the system to
respond, and then send a new request. In this case must the software also handles any timeout situation
in case the system is not responding. The protocol baud rate is either 9600 or 38400 depending on the
setting of the ELM327 device, 8 data bits, no parity and one stop bit.
One possible startup sequence of AT commands for communicating with the ELM327 interface is:

Tx Rx Comments
1 ATZ ATZ ELM327 v1.5 Device reset
2 ATE0 ATE0 OK Message echo On=1/Off=0
3 ATH0 OK Message header On=1/Off=0
4 ATL0 OK Message Line feed On=1/Off=0
5 ATSP0 OK Set protocol: 0=Auto (Different CAN protocols)
6 ATDP AUTO Display protocol type
7 ATI ELM327 v1.5 Device identification
8−N Looping getting the values

Note that some of these commands may take some time before an answer is received. As shown in
Figure 1.11 the car has several controllers monitoring and controlling a set of devices as sensors and
actuators. The OBD protocol is handling a set of parameters and these parameters are linked to values
handled by these controllers. Many of the these parameters are defined as standard parameters in OBD
and are assigned a parameter id number (PID) that will be used by the protocol to get the parameter
value.
The OBD protocol is defining different service types or modes and the most important service types

are:

Type Description
01 Show current data
03 Show stored diagnostic trouble codes
04 Clear diagnostic trouble codes and store values

The most used service type is 01, to get the current value for a specific parameter. The service types
03 and 04 are used to read any error codes (often combined with a warning on the dash board), and to
clear these error codes. The OBD protocol defines at least 10 different service types, check the protocol
documentation for more information.

1Many ELM327 devices contain old hardware and will not be supported by standard Windows 10 or 11 drivers. In
these cases, add an older serial driver supporting either the CH340 (Arduino) or PL2303HXA hardware depending on your
ELM327 device.

CHAPTER 1. DATA COMMUNICATION IN C# 9

Using the service type 01, a set of parameters can be read from the engine controller. The OBD
protocol is defining the parameter ids to read these parameters and a few of these parameters ids are:

PID PID Min Max Rx
Hex Dec Description Value Value Unit bytes Equation
04 4 Calculated engine load 0 100 % 1 (A) A∗100

255
05 5 Engine coolant temperature −40 215 ◦C 1 (A) A− 40
0C 12 Engine speed 0 16383.75 rpm 2 (A+B) (256∗A)+B

4
0D 13 Vehicle speed 0 255 km/h 1 (A) A
0F 15 Intake air temperature −40 215 ◦C 1 (A) A− 40
11 17 Trottle position 0 100 % 1 (A) A∗100

255

Information about more PID can be found in the OBD protocol documentation, a lot is available
on internet, like the OBD-II PIDs web site2 . Many car manufacturers may also have defined their own
PIDs in addition to the standard PIDs.
The serial port driver in C# can be used together with the ELM327 device to get information from

the OBD port. The commands will be to set up and initialize the ELM327 device and start requesting
information. The transmit commands will be:

ServiceType PIDCode (Hex) < CR >< LF >

and the receive information will be:

0x40 + ServiceType AnswerBytes (Hex) < CR >< LF >

An example of the startup communication with the ELM327 device is shown in the following list,
where Tx is the command sent from C# application and Rx is the data received by the C# application.
The list of the first commands are:

16-Apr-2020;16:03:16;Tx;ATZ
16-Apr-2020;16:03:17;Rx;ELM327 v1.5
16-Apr-2020;16:03:17;Tx;ATE0
16-Apr-2020;16:03:18;Rx;ATE0 OK>
16-Apr-2020;16:03:18;Tx;ATH0
16-Apr-2020;16:03:18;Rx;OK>
16-Apr-2020;16:03:18;Tx;ATL0
16-Apr-2020;16:03:19;Rx;OK>
16-Apr-2020;16:03:19;Tx;ATSP0
16-Apr-2020;16:03:23;Rx;OK>
16-Apr-2020;16:03:23;Tx;ATDP
16-Apr-2020;16:03:24;Rx;AUTO>
16-Apr-2020;16:03:24;Tx;ATI
16-Apr-2020;16:03:25;Rx;ELM327 v1.5
16-Apr-2020;16:03:26;Tx;010D
16-Apr-2020;16:03:26;Rx;41 0D 08
16-Apr-2020;16:03:26;Tx;0104
16-Apr-2020;16:03:26;Rx;41 04 67

A timestamp is included and note that the respons of the ATSP0 command, set the specific protocol
between the ELM327 device and the CAN bus, takes almost four seconds. However, the normal timing
is faster, about 200 to 300 ms for each message sequence. The last four lines are OBD information from
the vehicle where (notice that all values are hexadecimal values):

2OBD-II PIDs web site: https://en.wikipedia.org/wiki/OBD-II_PIDs (Oct-19).

Figure 1.12: Include the serial port library with the “using System.IO.Ports;”statement.

Id Service Command Value Description
1 Tx 01 0D Request speed
2 Rx 41 0D 08 Speed response
3 Tx 01 04 Request engine load
4 Rx 41 04 67 Engine load response

The first request is for the vehicle speed, the response starts with 0x41 which is 0x40 + 01 which is
a valid service type 01 response. The command is 0x0D so the current speed is 8 km/ h. The second
request is the engine load, and the engine load will be (see the PID list):

0x67 ∗ 100
255

% =
103 ∗ 100
255

% = 40, 4%

The application must, in a cyclic manner, request the wanted parameters from the car. Parameters
that are changing often should be requested more frequently than parameters not changing that much.
Parameters changing often can be the vehicle and engine speed while parameters not changing that
often can be the engine coolant temperature and the intake air temperature. An evaluation of which
parameters that are important for your application and how often each parameter should be recorded
should be decided in the analysis section of the software development.

1.3 Serial port programming in C#

1.3.1 Introduction

Serial port programming in C# is quite straightforward by using the standard serial library. Include the
serial port library in your code, as shown in Figure 1.12, and the serial port can be used like a text file
meaning that the port can be open, read from, written to and be closed.
Note that open is exclusive so only one application can open a specific serial port at a given time and

therefor it is important to check for a valid open response. For the same reason remember to close any
serial port no longer in use in your application, including when changing from one serial port to another
serial port.
In this chapter a console application will be developed to test the basic serial port functions with some

snippets of source code of using the serial ports and decoding the protocols. As always when developing
a software application, a use case diagram should be made and then choose the type of tier architecture.
An use case diagram for the application is shown in Figure 1.13. The use case shows the user functions
as 1) select a serial (COM) port, 2) set the parameters for this COM port, 3) select the protocol for
decoding the information on this COM port and 4) handling the data communication on the COM port.
A three tier architecture is choosen, one tier for the user interface (user interaction), one tier for the

business logic of the application meaning handling the logic of the serial protocols and the information
in the application, and one tier for the data layer to handle the serial port. This tier should also handle
any logging of data to a file, if needed. A tier can also be named a layer in the literature. The reason
for a tier architecture is to get a better structure of the application, and to better separate the code for
user interface, the business logic and the data handling.

CHAPTER 1. DATA COMMUNICATION IN C# 11

Figure 1.13: A use case diagram for the terminal application, with the user functions of selecting a
COM port, set the COM port parameters, select the protocol for that COM port, and handling the data
communication on that specific COM port.

1.3.2 Three tier architecture

The application was developed as a C# console application using the Visual Studio IDE. The IDE creates
a console template with the Program class and the static Main() method. The class ProgramSetupCon-
soleTerm was created to make the three tier architecture as shown in the C# code snippet:

//
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace NosComTerm
{

/// <summary>
class Program
///
/// </summary>
{

static void Main(string[] args)
{

ProgramSetupConsoleTerm rProgramSetupConsoleTerm;

rProgramSetupConsoleTerm = new ProgramSetupConsoleTerm();
}

}
/// <summary>
class ProgramSetupConsoleTerm
///
/// </summary>
{

LayerData rLayerData;
LayerBusiness rLayerBusiness;
LayerUser rLayerUser;

public ProgramSetupConsoleTerm()
{

/// include a try/catch block?
rLayerData = new LayerData();
rLayerBusiness = new LayerBusiness(rLayerData);
rLayerUser = new LayerUser(rLayerBusiness);
rLayerUser.MainLoop();

}

Figure 1.14: The main classes of the terminal application with a three tier architecture.

}
}
// EOC /////////////////////////////////

The ProgramSetupConsoleTerm class contains only the constructor running when the object was
created. The object creates the tier classes, starts with the LayerData tier, then the LayerBusiness tier
including a reference to the LayerData object, then the LayerUser tier object including the reference
to the LayerBusiness object, and finally starts the MainLoop() method in the LayerUser object. The
programming code standard used for development defines that any objects should start with the ‘r’
character to indicate a reference. The MainLoop() method will display the menu and wait for any input
selection by the user.
A try/catch block could have been included as the new statements are system operation and it is a

good advice to have a general try/catch block on a “high level”to catch any errors not catched by other
try/catch blocks.
The class diagram for the application is shown in Figure 1.14 where the main classes are included.

Two classes to handle the NMEA and OBD protocol are included by the LayerBusiness class. Normally
a separate class for handling the SerialPort should have been included by the LayerData class, but the
SerialPort methods are included in the LayerData to simplifying the application.
The main menu has selections for handling either the NMEA or the OBD protocol that will call an

appropriate method in the LayerBusiness class. The method in the LayerBusiness class will call either
the method in the NmeaProtocol or in the ObdProtocol class depending on the selected protocol, which
will use the serial port methods in the LayerData class.

1.3.3 Serial port library

The serial port library has a set of predefined methods that can be used for handling any serial port on
the computer. According to Figure 1.13, the use case diagram, the first option should be to get a list of
available serial port, select one of the available serial port(s), and the second option should be to open
the serial port with the right communication parameters as baudrate, data bits, parity and stop bits
before handling any protocol information.

Available serial ports

The serial port library has a method that will return a string array with the available serial ports in the
system. The source code snippet for a method getting the available serial ports in your system:

/// <summary>
private string[] GetListOfAvailableComPorts()
/// Purpose: fill a string array with available COM ports, null if no com ports.
/// Version: 1.0: 26-JAN-20: NOS

CHAPTER 1. DATA COMMUNICATION IN C# 13

/// </summary>
{

string[] saComPortNames;

try
{

saComPortNames = SerialPort.GetPortNames();
}
catch
{

saComPortNames = null;
}
return saComPortNames;

}

The method will return the string array filled with the available serial ports, and saComPort-
Names.Length will define the number of serial ports in the system. Try/catch is used since this is a
system command, and the string array will be null if an error.

Open and Close

Select an available serial port from the list, and open the serial port using the serial port name from the
list, the baudrate and with 8 data bits, no parity and one stop bit as default. The serial port names in
Windows are on the form COMx and in Linux on the form /dev/ttyx, where x is a number from 1 to N
(Linux from 00 to N-1). The source code snippet for opening the serial port is:

/// <summary>
public bool Open(string sPortName, int iBaudrate, out string sOpenMsg)
/// Purpose: open a COM port with selectable baudrate, fixed data bits, parity and stop bits.
/// Version: 1.0: 26-JAN-20: NOS
/// </summary>
{

if (bOpenPort == true)
{

rSerialPort.Close();
}
try
{

rSerialPort = new SerialPort(sPortName, iBaudrate, Parity.None, 8, StopBits.One);
rSerialPort.ReadTimeout = 500;
rSerialPort.WriteTimeout = 500;
rSerialPort.Open();
sOpenMsg = "Open <" + sPortName + "> serial port OK!";
bOpenPort = true;

}
catch (Exception e)
{

sOpenMsg = "Error open <" + sPortName + "> serial port: " + e.Message;
bOpenPort = false;

}
return bOpenPort;

}

The rSerialPort object reference is a global variable for the class as the object reference must be used
for any read() and write() methods for serial port. The binary flag bOpenPort is used for defining if a
serial port is open or not. This flag can also be used in the Read(), Write() and Close() section to verify
that the serial port is already open. So the first operation when opening a serial port is to close any

already opened serial port. Then make a new serialPort object with the correct settings of the baudrate,
data bits, parity and stop bits. These parameter can also be changed after the serial port is opened. The
parameters ReadTimout and WriteTimeout are timeout parameters for letting the serial port driver of
the operating system to timeout if no characters are read or written within the timeout period. These
timeout parameters are in ms, in this case the timeout parameters are 500ms. The Read() operation
will try to read a specific number of bytes and will not finish unless the number of characters are read or
if the timeout parameter is set. The application will wait for ever (“hang”) if no valid if the ReadTimout
parameter value is not set (used). An ok open message will be returned to the calling method with the
binary open flag set to true, if the open() method was ok. An error message with information will be
returned to the calling method with the binary open flag set to false if the open() method fails.
The source code snippet for closing the serial port:

/// <summary>
public void Close()
/// Purpose: close an open serial port
/// Version: 1.0: 26-JAN-20: NOS
/// </summary>
{

if (bOpenPort == true)
{

rSerialPort.Close();
bOpenPort = false;

}
}

The binary flag bOpenPort is used to indicate an already open serial port, see the code snippet for
open the serial port.

Read and Write

The Read() method will read a number of bytes from the serial port, the parameters of the Read()
method are:

public int Read(byte[] buffer, int offset, int count);

where buffer is a byte array, offset is starting point in the buffer array (normally 0), and count is the
number of bytes that you want to read from the serial port. Offset is used if you have read only part
of a message and want to read the rest of the message. The Read() method supports several type of
parameters, check the C# serial port documentation for more information. The source code snippet for
an example of reading from the serial port:

/// <summary>
public string Read(int iCntMax, bool bTimeoutMsg)
/// Purpose: read a serial port with a maximum number of bytes, with timeout support.
/// Version: 1.0: 26-JAN-20: NOS
/// </summary>
{

int iLen, iMsgCnt, iOffset, iMaxLoop;
string sMsgBuf;
byte[] bMsgBuf;

iLen = 0;
sMsgBuf = "";
try
{

bMsgBuf = new byte[iCntMax + 16];
iOffset = 0;

CHAPTER 1. DATA COMMUNICATION IN C# 15

try
{

iMaxLoop = 0;
while (iOffset < iCntMax && iMaxLoop < 64)
{

iLen = rSerialPort.Read(bMsgBuf, iOffset, (bMsgBuf.Length - iOffset));
iOffset += iLen;
iMaxLoop++;

}
for (iMsgCnt = 0; iMsgCnt < iOffset; iMsgCnt++)
{

sMsgBuf = sMsgBuf + Convert.ToChar(bMsgBuf[iMsgCnt]);
}

}
catch (TimeoutException)
{

// Do nothing
if (iOffset > 0)
{

for (iMsgCnt = 0; iMsgCnt < iOffset; iMsgCnt++)
{

sMsgBuf = sMsgBuf + Convert.ToChar(bMsgBuf[iMsgCnt]);
}
if (bTimeoutMsg == true)
{

sMsgBuf = sMsgBuf + "<Timeout>";
}

}
}
catch (Exception e)
{

// Any other exceptions
sMsgBuf = sMsgBuf + "<Exception=" + e.Message + ">";

}
}
catch (Exception e)
{

sMsgBuf = sMsgBuf + "<Serial port error=" + e.Message + ">";
}
return sMsgBuf;

}

The source code snippet for an example of writing to the serial port:

/// <summary>
public bool Write(string sBuf)
/// Purpose: write a string buffer to the serial port
/// Version: 1.0: 26-JAN-20: NOS
/// </summary>
{

bool bWriteOk;

try
{

rSerialPort.Write(sBuf);
bWriteOk = true;

}

Figure 1.15: The output from the MainMenu() method in the application, showing the options that can
be selected.

catch (Exception e)
{

sBuf = "Error write to the serial port: " + e.Message;
bWriteOk = false;

}
return bWriteOk;

}

1.3.4 Terminal console application

A console application was developed in C# for testing out the serial port, and NMEA and OBD protocols
are two of the protocols that are included. A console application is useful for making a test version and the
developed application is developed for testing different type of serial port operations. These operations
can be to test the hardware of software of the computer by loopback testing, just dumping all the
information transmitted and received regardless of any protocols, a general terminal application able to
transmit commands, and test out different types of data communication protocols. The application was
developed according to the class diagram shown in Figure 1.14.

Menu selections

The output from the MainLoop() method is shown in Figure 1.15, showing the selectable options in the
application.
The following options are available in this terminal console application, but not all of these options

will be explained in this section:

Key Description Explained
N Select a serial port, based on available ports in the system X
O Open the selected serial port, choosing the right baud rate X
D Input the test string used for the loopback testing of the port
L Loopback testing of the selected serial port X
R Dumping of raw data from the serial port (X)
G Display GPS data from the NMEA protocol (S: Start/Stop button) (X)
B Display OBD data from the OBD protocol (S:Start/Stop button)
M Display Modbus data from the Modbus protocol (S:Start/Stop button)
S Generic serial port terminal, transmit commands and receive data
Q Quit the terminal console application.

The first option should be to select a serial port. In this case the application is running on a Windows
system so the serial port names will be COMx where x is a number from 1 to N, depending on the number
of available serial ports. The user must use the ‘N’button to make this selection, and the output from
the application is shown in Figure 1.16.
On top of the screen is the current serial port selected, in this case None. At bottom is a list of

avaialble serial ports, COM1 and COM7, and the ’2’button is used to choose serial port COM7. The

CHAPTER 1. DATA COMMUNICATION IN C# 17

Figure 1.16: The ‘N’option in the software for selecting a serial port. Available serial ports in this
system is COM1 and COM7.

Figure 1.17: The selection of a baud rate for open the COM7 serial port.

next operation is to open this serial port with the appropriate baud rate like the snippet code shown for
the Open() method. It is of course possible to combine the selection of a serial port and open a serial
port in the same menu selection if wanted. The menu option ‘O’will give the output as shown in Figure
1.17 with the selected serial port on the top, and a list of available baud rates at the bottom.
Use the button for the number in front of the baud rate to select the valid baudrate, and the respons

shown in Figure 1.18 will be the results. In this case the serial port COM7 is now opened ok and can be
used by the application. An error will be displayed if the open() statement fails, as shown in the open()
source code snippet.
The port is now open with the selected baud rate and the serial port can now be used for data

communication.

Loopback testing

The first time using a serial port, a loopback testing can be useful to check that both the hardware
and software is working. Loopback testing means that an interconnection between the transmitter pin
and the received pin for the serial port must be inserted, and all the data transmitted for serial port
should be received by the application. In this way both the transmitter and receiving section of the
application, and the serial port will be testing. Figure 1.19 shows a serial port connector with a loopback
test connector (to the left, Rx and Tx pins connected) and the NMEA protocol connector (in front, only
Rx and Gnd pins connected).
The loopback connector is inserted and the ‘D’option is selected to make the loopback test string to

be “SerialPortTesting”. Then the ‘L’option is selected and the output from the application is shown in
Figure 1.20. The application will add a counter id after each time reading the loopback test string, so the
output should be “SerialPortTestingx”where x is a number from 1 and increasing. The read opeation is
defined to read 16 characters from the serial port for each operation, the reason for the figure to display

Figure 1.18: The ‘2’button is used to select 4800 as the baud rate, and the serial port is now open OK.
The COM7 serial port can now be used by the application.

Figure 1.19: A serial port with a loopback serial port connector that can be inserted to test the serial
port. The loopback connection is just interconnecting pin 2 and pin 3 of the serial port, the transmitter
and receiver pins.

CHAPTER 1. DATA COMMUNICATION IN C# 19

Figure 1.20: The console output from the loopback testing option.

only 16 characters on each line. However, all the characters are read so the serial port and the application
is working. The screen update will stop when the loopback test connector is disconnected, or use the
‘Q’button to stop this operation. This output also shows the challenges on receiving information on a
serial port and merge the information into a valid structure. The receiving method may stop the reading
at any time and position of the receiving information, depending on the impementation of reading the
serial port. If reading too few characters, the application need logic to merge these characters into a valid
message. If reading too many characters, the application will timeout and use more time in collecting
the information. Also, reading too many characters may end up reading several messages at the same
time, as shown in Figure 1.8.

Dumping of raw data

This can be a very useful option just to dump the all the caracters received from the serial port. Convert
the byte[] buffer from the read() method to a string, and print the string on the console. This is shown
in Figure 1.8 but remember that this requires an ASCII protocol with mainly printable characters. Any
non-printable characters must be converted to printable characters like 0x08, 0x0a and 0x0d can be
converted to <TAB>, <LF> and <CR>. For a binary protocol, like Modbus RTU, the information
must be converted to printable characters before this option can be used.

Implement NMEA protocol

A console application can be a good tools to test out the first version of the protocol coding and decoding,
to get some experience how to merge and extract the protocol information. Figure 1.8 shows the raw
data for the NMEA protocol showing the structure of the message, and Figure 1.9 show the extraction of
some of the information from the NMEA command GPGGA. The list in section 1.2.4 shows a sequence
of OBD messages, with timestamps, both transmitted and received, for the OBD protocol. Both of these
protocols are ASCII protocols meaning that the information consists of ASCII characters, where many
of the ASCII characters are printable characters. The decoding of such protocols will be to use different
string operations in C#. The general structure is 1) to find the start of the message, 2) find the end of
the message to be sure that the whole message has been received, 3) any error checking if checksum is
available, 4) subtract the different fields of the message depending on the field separator, and 5) decode
the information wanted from these fields.
A source code snippet for one way of extracting information from a NMEA message. Just part of the

method is included to get an idea of one possible way of extracting such information:

/// <summary>
int decodeNmeaMsg(string sNmeaMsg, out string sErrMsg)
/// Purpose: decode a NMEA message
/// Version: 1.0: 29-JAN-20: NOS
/// </summary>
{

string[] sNmeaFields;
string sNmeaCmd, sNmeaChksum;
double dGpsTime, dLatitude, dLongitude;
int iGpsQuality;

/// Spilt the fields based on comma and star
sNmeaFields = sNmeaMsg.Split(’,’,’*’);
sErrMsg = "";
/// The last field is the checksum, after the star
sNmeaChksum = sNmeaFields[sNmeaFields.Length - 1];
/// No test of the checksum - must be included in the final solution!
/// Get the NMEA commands
if (sNmeaFields[NMEA_CMD_OFFSET].Length > 2)
{

/// Remove the GP part of the message command
sNmeaCmd = sNmeaFields[NMEA_CMD_OFFSET].Substring(2);
if (string.Equals(sNmeaCmd, "GGA", StringComparison.OrdinalIgnoreCase) == true)
{

try
{

dGpsTime = Convert.ToDouble(sNmeaFields[NMEA_GGA_CMD_GPS_TIME_OFFSET]);

The message format of any protocol is important to understand when implementing such a protocol
and a console application can be a very good way of testing such an implementation before integrating
the protocol support into the final application.

1.4 Network communication programming in C#

1.4.1 Introduction

Data communication is important for communication between computers, both on local area networks
(LAN)(intranet) and on Internet. The previous chapter looked into serial port communication, using
serial ports for external communication. In this chapter will the focus be network data communication,
meaning data communication over a network. Serial port data communication has a limited number of
transmitters and receivers on the same communication media, and normally the communication media
has also a limited length as well. The maximum length is also often depending on the baud rate for serial
data communication. Network data communication is using a more complex structure with hardware
devices like switches, routers, gateways and firewalls to link network system together, route the messages
between these network systems, and using firewalls to protect for which messages that can be received
by each sub network.
This means that a network protocol will be more complex than a serial port protocol, however the

OSI model can also be used to structure the functionality of these protocols. The serial port protocols
depends mainly on the lowest layer in the OSI model, while network protocols will depend on several
layers in this protocol model. Still, network communication must still depend on some sort of serial data
communication, like the RS-485 protocol used in many network protocols, as the physical layer. The
physical layer can still use either wired, optical or wireless physical connection for data communication.

1.4.2 OSI model

The OSI model is an abstract model used to structure any communication protocol into the functionality
of seven layers, as shown on the left side in Figure 1.21. The serial port communication described in the

CHAPTER 1. DATA COMMUNICATION IN C# 21

Figure 1.21: The OSI model, the general model to the left, the Internet structure in the middle, and the
TCP/IP solution to the right.

Figure 1.22: The socket connection steps for communication for server and client objects in C#.

previous chapter describes the functionality in the physical layer of the OSI model, while the network
data communication is described by the functionality of the first four layers, physical, data link, network
and transport layers.
This chapter will not focus on the OSI model(Stevens 1990)(Stallings 2001), but on the TCP/IP

protocol (Comer 1991) (Stevens 1990) (Crowcroft & Phillips 2002) (Bentham 2002) used as one protocol
for the transport layer and corresponding support from C# libraries. The structure of the TCP/IP
protocol is indicated to the right in Figure 1.21. The figure shows that the TCP/IP protocol is using
the functionality of the Internet Protocol (IP) for communicating with the nodes on the network, where
the main functionality is logical addressing. A node in one local area network (LAN) connected to
the Internet can communicate with another node connected to another LAN on the Internet using an
IP protocol. The IP protocol will use either the Ethernet or Token Ring protocols for handling the
functionality of the two lowest layers in the OSI model, as shown to the right in the figure. The Ethernet
protocol is the most used protocol today for handling the Internet communication on these lowest layers.

1.4.3 TCP/IP protocol

The TCP/IP protocol is a network protocol and is based on the client/server concept. This concept
define there must be an existing server with some sort of information that a client wants get access to.
In data communication a socket is used to establish a connection between two or more nodes (computer
with communication capabilities), and these sockets will be used to send data between the nodes. For
the TCP/IP protocol will the server first create a listener socket, and any client will create a socket for
connecting to the listener socket of a specific server. For the TCP/IP protocol will the IP addresses be
used by the both the server and clients to create the socket for communicating, so the IP address of the
server should be known. When the socket connection is established, the nodes can exchange information
using the socket connection (read and write methods). Figure 1.22 shows the socket connection where
the server first make a listener socket and waits for any client socket to connect to that socket (step 2).

When the connection is fulfilled will both systems make a data stream for exchanging information,
by reading and writing. Note that this will be a multitasking system as these to applications will run
independent of each other. Ending the connection by closing the data stream and socket connection at
both ends.

1.4.4 Socket programming in C#

Socket programming (Stevens 1990) (Crowcroft & Phillips 2002) (Bentham 2002) (Mahmoud 2004) is
based on a bidirectional communication link between two applications, a server application and a client
application, see Figure 1.22. Socket programming is using the IP address so the TCP/IP protocol needs
to be implemented in the system, but most nodes today have the TCP/IP protocol included. The C#
socket library is included in the System.Net and System.Net.Sockets namespaces, so these two libraries
must be included in your application, as shown in the following list::

using System;
using System.Text;
using System.Net.Sockets;
using System.Net;

The first step is to get the IP address of the, either the running node or the remote node. Use the
following commands to get a list of the available IP addresses for the node:

ipHostInfo = Dns.GetHostEntry(Dns.GetHostName());
ipAddress = ipHostInfo.AddressList[0];

The first line gets the information from the Domain Name System, and the information is using the
name of this node. The second line gets a list of available IP addresses for this node. The reason for
several IP addresses is that the system has support for both IPv4 and IP v6 protocols with a different
type of IP addresses. In this case is the first IP address used.
For the server will the next steps be:

tcpListener = new TcpListener(ipAddress, iSocketPortId);
tcpListener.Start(5);
tcpClient = tcpListener.AcceptTcpClient();
tcpNetworkStream = tcpClient.GetStream();

First make a listener socket that is used for a client to connect, and start this listener socket. In
this case it allows for up to five clients to connect at the same time. The AcceptTcpClient() command
will wait (block) until a client is connecting to this socket, with the correct IP address and socket port
number. Accepting the client connection, a network data stream is created to allow for reading and
writing data between the server and client.
The commands will close the connected after finishing the communication:

tcpNetworkStream.Close();
tcpClient.Close();

For the client will the next steps be:

tcpClient = new TcpClient(ipAddress.ToString(), iSocketPortId);
tcpNetworkStream = tcpClient.GetStream();

CHAPTER 1. DATA COMMUNICATION IN C# 23

The TcpClient() command will connect to an existing socket connection, with the correct IP address
and socket port number. Accepting the server connection, a network data stream is created to allow for
reading and writing data between the server and client.
The network data stream can now be used for transmitting and receiving bytes using the Read() and

Write() methods for the data stream references. The Read() method will read a number of bytes, and
return the number of bytes read. The Read() method can also be extended with the buffer offset and
maximum number of bytes to read. The Read() method reading a number of bytes and converting to a
printable string:

byte[] baBuffer = new byte[64];
int iLen = tcpNetworkStream.Read(baBuffer);
String sBuffer = Encoding.ASCII.GetString(baBuffer);
sBuffer = sBuffer.TrimEnd(’\0’);

The Write() method will write a number of bytes, no return. The Write() method can also be
extended with the buffer offset and maximum number of bytes to write. The Write() method making a
string, converting the string into a byte array, and write the byte array:

string sBuffer = DateTime.Now.ToString() + ": Server command=<" + sBuffer + ">";
byte[] baBuffer = Encoding.ASCII.GetBytes(sBuffer);
tcpNetworkStream.Write(baBuffer);

The commands will close the connected after finishing the communication:

tcpNetworkStream.Close();
tcpClient.Close();

Note that these socket methods are system methods and try/catch blocks must be used to make the
implementation more robust. The Read() andWrite() methods handling only a byte array is the challenge
for TCP/IP data communication as no standard protocol exists for handling the data structure in these
byte arrays. If your application is receiving the byte stream 160A326790B386D2B4A8324447 you will
not have any information about this information unless informed by the sender application system. This
is also one of the reason for many proprietary protocols for Internet of Thing (IoT) systems, using the
TCP/IP protocol do NOT define any data structure of the byte buffers. The solution will often be to
define a new protocol on top of the TCP/IP protocol for handling the application layer of the data
communication, see Figure 1.21.
These socket methods will be used in a console test application to show the implementation of socket

communication, and a simple protocol will be defined on top of the TCP/IP protocol to handle the
messages between the socket server and client.

1.4.5 Console test application

A simple console application will be developed to test out the concept of client/server programming
using sockets in C#. The application will also show the challenges with the TCP/IP protocol as this
protocol is just defining a data buffer for exchanging information, no interpreting of the information
in the data buffer. A very simple protocol has been define, two string commands, for communication
between the server and the client. These commands are string based, “LIST”and “Quit”; “List”will
display the IP address(es) of the server node and “Quit”will terminate the server/client connection. The
TCP/IP protocol is also used for IoT and IIoT devices and these devices will have the same challenge
with the TCP/IP protocol, and is the reason for many different IoT protocols, both proprietary and
open protocols. These protocols will define the interpretation of the TCP/IP buffer, and support the
three upper layers in the OSI model, normally only the “Application layer”. The “presentation layer”
contains any security functionality and should be integrated into any of these protocols.
The first task when designing a new software application is to make a use case diagram, and this

diagram is shown in Figure 1.23.

Figure 1.23: The use case diagram for the console socket test application, only one use case for testing
commands between a local socket server and socket client.

Figure 1.24: The one tier architecture shown in a class diagram, for the network test application.

Since this is a only an application for testing/showing the socket functions in C# for network com-
munication, only an one tier application is developed. If the application is going to be extended with
new functionality, a two or three tier application should have been developed. The console application
consists of four classes, as shown in the class diagram in Figure 1.24.
The main method of the server class (RunServerThread()) will run as a separate process, making this

a multitasking system. The main method in the client class (HandleCommunication()) will contain the
functionality of the client, with interface to the user selecting any commands. Program class is generated
by the Visual Studio IDE, the ProgramStart class is added to make an object, and this object will first
start the server thread as part of the server object, and then the main loop in the client object. The
output from this multitasking system is shown in Figure 1.25.
The user first send the command “test”to the server, and the server respond with an invalid command

message. Then the user tries the “verify”command with the same response from the socket server. The
next command is “list”, listing the IP addresses of the server, and finally the “quit” command first
terminating the socket connection, then the server process and then the client application. Note that for
simplicity will the server write the list messages to the console, the best solution is however for the server
to send this information as text messages to the client, and for the client to display this information on
the console. Why is this a better solution?
The simple protocol implemented in the application is the two text commands “LIST”and “QUIT”

checked for in the server thread. Also note that the information is sent as plain text on the socket
stream meaning that the information can be seen by anybody with access to the communication media
and the TCP/IP protocol. Part of a data security policy can be to crypt/decrypt the byte buffers
when transmitting and receiving the data. Wireshark3 is one of the free applications that can be used to
visualize data from external TCP/IP messages. The source code for the network console test application:

///
///
/// Purpose: make a console application showing the usage of TCP/IP socket programming,
/// one thread running as a server, and the application running as a client
/// Version: 19-OCT-20: NOS
///
using System;

3Wireshark, a free and open-source network data packet analyzer, www.wireshark.org, Nov-19.

CHAPTER 1. DATA COMMUNICATION IN C# 25

Figure 1.25: The output for the network test application, the socket server running as a background
prosess (thread) and the socket client running as the foreground application with user interaction.

using System.Text;
using System.Net.Sockets;
using System.Net;
using System.Threading;
///
namespace NosConsoleSocket
{

//
class Program
{

/// <summary>
static void Main()
/// Purpose: The main entry point for the application.
/// Version: 1.0: 20-OCT-20: NOS
/// </summary>
{

/// Convert from a static to a dynamic object
new ProgramStart();

}

//
class ProgramStart
{

const int iSocketPortNumber = 9999;
ServerSocketThread rServerSocketThread;
ClientSocket rClientSocket;
/// <summary>
public ProgramStart()
///
/// Purpose: the startup object for handling the server thread and client
/// Version: 21-OCT-20: NOS
/// </summary>
{

try
{

/// start the socket server first as a separate thread
rServerSocketThread = new ServerSocketThread(iSocketPortNumber);
/// Wait to let the server create the connection point for clients

Thread.Sleep(500);
/// start the socket client to communicate with the server
rClientSocket = new ClientSocket(iSocketPortNumber);
rClientSocket.handleCommunication();

}
catch (exception ex)
{

Console.WriteLine(" Application error: " + ex.Message());
}

}
}
///
class ServerSocketThread
{

int iSocketPortId;
bool bServerThreadFlag;
Thread thServerSocket;
/// <summary>
public ServerSocketThread(int iSPN)
///
/// Purpose: constructor making the server thread using sockets
/// Version: 22-OCT-20: NOS
/// </summary>
{

iSocketPortId = iSPN;
bServerThreadFlag = true;
thServerSocket = new Thread(new ThreadStart(this.runServerThread));
thServerSocket.Start();

}
/// <summary>
private void runServerThread()
///
/// Purpose: the server thread running as a separate process, handling the server
/// functions.
/// Version: 22-OCT-20: NOS
/// </summary>
{

IPHostEntry ipHostInfo;
IPAddress ipAddress;
TcpListener tcpListener;
TcpClient tcpClient;
NetworkStream tcpNetworkStream;
byte[] baBuffer;
string sBuffer;
int iCnt;
bool bCmdValid;

try
{

/// get the IP address information this node
ipHostInfo = Dns.GetHostEntry(Dns.GetHostName());
ipAddress = ipHostInfo.AddressList[0];
/// make a TCP connection point based on the IP address and the port number
tcpListener = new TcpListener(ipAddress, iSocketPortId);
/// Start the listner connected, allow up to five clients at the same time
tcpListener.Start(5);
/// wait for a client to connect to this conenction point (port ID)
Console.WriteLine("Server waits for clients to connect at IP address " +

CHAPTER 1. DATA COMMUNICATION IN C# 27

ipAddress.ToString() + "...");
tcpClient = tcpListener.AcceptTcpClient();
/// a client has connected, make a data stream for communicating with the client
tcpNetworkStream = tcpClient.GetStream();
/// loop for communicating with the client, let the client close the connection.
while (bServerThreadFlag == true)
{

/// wait for receiving a message from the client
baBuffer = new byte[64];
tcpNetworkStream.Read(baBuffer);
sBuffer = Encoding.ASCII.GetString(baBuffer);
sBuffer = sBuffer.TrimEnd(’\0’);
/// check for a valid message from the client
/// Note that the TCP/IP protocol just define a byte data buffer, no data
/// structure. You must define your own protocol based on this buffer. The same
/// for IoT communication, often defining a propritary protocol on top of TCP/IP.
/// Define a simple protocol, based on string commands; LIST and QUIT.
/// LIST shows the IP addresses for the server and QUIT terminates the server
/// connection.
sBuffer = sBuffer.ToUpper();
if (string.Equals(sBuffer, "QUIT") == true)
{

bServerThreadFlag = false;
bCmdValid = true;

}
else if (string.Equals(sBuffer, "LIST") == true)
{

Console.WriteLine("Server: Available IP addresses for the server node:");
for (iCnt = 0; iCnt < ipHostInfo.AddressList.Length; iCnt++)
{

Console.WriteLine(" IP adrress[" + (iCnt + 1).ToString() + "] = " +
ipHostInfo.AddressList[iCnt].ToString());

}
bCmdValid = true;

}
else
{

bCmdValid = false;
}
/// Send an answer back to the client
sBuffer = DateTime.Now.ToString() + ": Server command=<" + sBuffer + ">";
if (bCmdValid == false)
{

sBuffer = sBuffer + " Invalid command!";
}
baBuffer = Encoding.ASCII.GetBytes(sBuffer);
tcpNetworkStream.Write(baBuffer, 0, baBuffer.Length);

}
/// The connection is closed, close the data stream and socket.
tcpNetworkStream.Close();
tcpClient.Close();
Console.WriteLine("Server has closed the socket connection!");

}
catch (Exception ex)
{

/// Display any errors for the server socket thread
Console.WriteLine("Server error: ", ex.Message);

}

}
}
///
class ClientSocket
{

const int MAX_RX_LEN = 128;
int iSocketPortId;
IPHostEntry ipHostInfo;
IPAddress ipAddress;
TcpClient tcpClient;
NetworkStream tcpNetworkStream;
string sTxBuf, sRxBuf;
byte[] baBuf;
/// <summary>
public ClientSocket(int iSPN)
///
/// Purpose: constructor for the client class
/// Version 23-OCT-20: NOS
/// </summary>
{

iSocketPortId = iSPN;
}
/// <summary>
public void handleCommunication()
///
/// Purpose: the client application, communicating with the server process
/// Version: 23-OCT-20: NOS
/// </summary>
{

try
{

/// Get the IP address of this node
ipHostInfo = Dns.GetHostEntry(Dns.GetHostName());
ipAddress = ipHostInfo.AddressList[0];
/// connect to server running on localhost at the specific port number id
tcpClient = new TcpClient(ipAddress.ToString(), iSocketPortId);
Console.WriteLine("Client connects server at IP address " + ipAddress.ToString() +

"...");
/// make the data stream for reading and writing with the server
tcpNetworkStream = tcpClient.GetStream();
Console.Write("Transmit a command to the server (QUIT will end):");
sTxBuf = "";
/// handle the simple string based protocol for the server communication
while (string.Compare(sTxBuf, "QUIT", true) != 0)
{

/// get the next command from the user
sTxBuf = Console.ReadLine();
Console.WriteLine("Client transmits the command = <" + sTxBuf + ">");
baBuf = Encoding.ASCII.GetBytes(sTxBuf);
/// transmit the command to the server, and wait for any answer
tcpNetworkStream.Write(baBuf, 0, baBuf.Length);
/// release cpu time for other processes while waiting for server response
Thread.Sleep(100);
/// Read any answer from the server
baBuf = new byte[MAX_RX_LEN];
tcpNetworkStream.Read(baBuf, 0, baBuf.Length - 1);
sRxBuf = Encoding.ASCII.GetString(baBuf); // convert byte array to string
Console.WriteLine("Client receives the server message: " + sRxBuf);

CHAPTER 1. DATA COMMUNICATION IN C# 29

Figure 1.26: The use case diagram for the main functionality of the chat application, with two use cases.
One use case for handling configuration and one use case for handling the chat communication.

if (string.Compare(sTxBuf, "QUIT", true) != 0)
{

Console.Write("Transmit a command to the server (QUIT will end):");
}

}
/// Close the socket communication with the server
tcpNetworkStream.Close();
tcpClient.Close();
Console.Write("Press any key to quit the application");
Console.ReadKey();

}
catch (Exception ex)
{

/// Handle any client erros
Console.WriteLine("Client error: ", ex.Message);

}
}

}
}
///
/// EOC ///

1.4.6 GUI Chat application

The console test application is running both the server and the client on the same node which does
not take any advantages of network communication. A Graphical User Interface (GUI) application that
can be used as a chat application between two nodes is developed to show full utilization of network
communication. With this application two user should be able to communicate (chat) running the same
application on two different nodes in a local area network (LAN). It should also be possible to use
the application over Internet but requires that the selected port number is available for communication
through any firewalls. Note that the usage of this application should trigger your “antivirus/internet
security”protection as this application is trying to make a TCP/IP connection on a non-standard port
number.
The use case diagram for application is shown in Figure 1.26, showing the main user functions for

the application.
The first use case will be handle the configuration of the application (server/client mode, IP address

and socket port number) and the second use case for the chat function where the users can chat with each
other by writing messages. The connection will be part of the second use case as this will involve both
users, where the remote user is shown as the TCP/IP network actor. The structure of the application
will be a three tier architecture, one tier for the user interface, one tier for the business logic for handling
the communication modes and exchange of messages, and the tier for the data layer handling the socket

Figure 1.27: The three tier architecture class diagram of the GUI chat application, with the program
startup classes, the tier classes, socket mode classes and a class for configuration parameters.

Figure 1.28: The deployment diagram for the application, running two applications. One application as
the server, one application as the client, and using a socket connection as the TCP/IP communication.

communication. The data layer can also be extended with a log feature saving the messages on a text
file. The class diagram for this structure is shown in Figure 1.27.
The most important classes is shown in this class diagram, two classes (Program and ProgramStart)

for starting the application, three classes for handling the tier functionality of the application (LayerUser,
LayerBusiness and LayerData), one class for the configuration parameters, and two classes handling the
threads for server and client socket communication. Only one of these threads will be running in a specific
application, depending on the configuration. A thread is very useful to let the socket communication be
a background process independent of any user interaction. Figure 1.28 shows the deployment diagram,
showing the two instances of the application running in a network. One application configured as the
socket server, with the ServerSocket thread object activated, and one application configured as the socket
client, running the ClientSocket thread object.
The C# library and methods are the same as used for the console application, however this ap-

plication is extended with a configuration section and a three tier architecture. The user interface for
the application is shown in Figures 1.30 and 1.29, where Figure 1.30 shows the configuration and some
messages for the client application and Figure 1.29 shows the configuration and some messages for the
server application.
The user interface consists of five sections, one section with the menu bar and the host name on the

top, two message sections with the transmitted messages to the left and the received messages to the
right. The section in the lower left corner is status information from the application, in this case the
connection and disconnection to any remote nodes. The last section, in the lower right corner, is the

CHAPTER 1. DATA COMMUNICATION IN C# 31

Figure 1.29: The configuration and messages for the server application.

configuration section, where the user selects the socket (server or client), the port number and the IP to
use.
The setup of the system should start with the server application, and the configuration section. Select

an unused port number, a good choice is to select a port number above 1024. The valid port numbers
are 0 to 65535. Note that using an unused port number above 1024 should result in a warning from the
Antivirus/Internet protection of your system as these ports will also be used for a cyber security attach
of computers. Select the socket type, server or client, and an IP address. A socket connection consists
of a socket number and an IP address. In the upper right corner of the application in Figure 1.29 the
name of node is shown, the server node name for the socket the connection. The IP addresses are shown
in the list in the lower right corner, shown both IPv4 and IPv6 addresses for this node. A good choice
can be to use the IPv4 addresses as this is more easy for the user of the client application to input the
IP address. Click on the address that you want to use, and the IP address will be shown in the right
upper corner. Use the Connect button to start the server socket thread. Messages in the status window,
lower left corner, shows that IP addresses are listed, and that the server has started with a specific IP
address. The Connect button will change the text to Disconnect when connected.
The setup of the client application must use the same setting as the server application, as shown in

Figure 1.30. The node name in the upper right corner is the name of the client node, not the same as
the server node. The next field in the upper right corner must be the IP address of the server, so the
same IP address as in Figure 1.29. Use the same IP address and socket number as the server, and use
the Connect button to connect to the server socket. Information in the status windows shows the status
of this connection. When connected, input a message in the input field in the upper left corner and use
the Send Msg button to the send the message to the remote node. The upper left list window shows
the messages sent from the node, and the upper right list window shows the messages received from the
remote node.
The source code for this application will not be included, but is using the same methods as shown

for the console application. Some comments with code snippets will however be included for specific
part of this application, as a multitasking (multithreading) GUI application will include some challenges
with sending events between the threads. The software architecture is a three tier architecture for this
application, as shown in Figure 1.27 and the normal message flow is to use methods to get information
from a lower tier. The challenge is to get information from a lower tier up to a higher tier when receiving
external information and in this application is the publish/subscriber concept (best practice - design
pattern) used. The publisher/subscriber concept consist of one publisher, active on a lower tier, and
activated when receiving external information. Any method in a higher tier can subscribe on these

Figure 1.30: The configuration and messages for the client application.

publisher, and be informed when new external information is received.
The data flow in this application is, with reference to Figure 1.27, is when sending a message is to

make the message in the user tier, send the message buffer down to business tier, further down to the
data tier, and the active thread for sending to the remote node. The challenge is receiving a message
from the remote node. One solution can be to let the user tier poll the socket thread all the time but this
will waste cpu power and memory, here the publisher/subscribe concept should be used. The threads will
be the publishers, and the user tier will be the subscriber, receiving an event whenever new information
is received from the remote node.
The source code snippets for the publisher/subscriber logic:
1 : define the callback methods as delegate methods in the header of the LayerUser class:

/// <summary>
/// Purpose: event handler with the UiEventArgs object as information
/// </summary>
public delegate void HandlerUiMsg(object rSender, UiEventArgs eUi);
delegate void AddReceivingMsgCallback(string txt);
delegate void AddStatusMsgCallback(string txt);

2 : define the event handler in both the LayerUser and LayerData classes:

HandlerUiMsg eListenUiMsg = new HandlerUiMsg(OnHandlerUiMsg);
rDataLayer.ePublishUiMsg += eListenUiMsg;

3 : define the event handlers. Note that the events has to be sent between different threads so these
handlers must be thread safe:

/// <summary>
public void OnHandlerUiMsg(object rsender, UiEventArgs eArgs)
///
/// Purpose: handling UI event commands

CHAPTER 1. DATA COMMUNICATION IN C# 33

/// Version: 14-NOV-20: NOS
/// </summary>
{

switch (eArgs.iCmd)
{

case (int)Constants.UiEventCmd.MsgRxList:
addReceivingMsgThread(eArgs.sMsg);
break;

case (int)Constants.UiEventCmd.MsgStatusList:
AddStatusMsgThread(eArgs.sMsg);
break;

case (int)Constants.UiEventCmd.MsgSocketButton:
rGuiForm.buttonSocketConnect.Text = eArgs.sMsg;
break;

default:
addStatusMsg("Error: Rx invalid UI event cmd = " + eArgs.iCmd.ToString());
break;

}
}

/// <summary>
public void AddStatusMsg(string sStatusMsg)
///
/// Purpose: add a messge to the status window
/// Version: 13-NOV-20: NOS
/// </summary>
{

string sMsg;

sMsg = DateTime.Now.ToString() + ": " + sStatusMsg;
rGuiForm.listBoxStatusMessages.Items.Add(sMsg);

}
/// <summary>
public void AddStatusMsgThread(string sRxMsg)
///
/// Purpose: update the status window in the GUI, threadsafe
/// Version: 1.0: 11-OCT-20: NOS
/// </summary>
{

// InvokeRequired compares the thread IDs
if (rGuiForm.listBoxStatusMessages.InvokeRequired == true)
{

try
{

AddStatusMsgCallback rCallback = new AddStatusMsgCallback(addStatusMsgThread);
rGuiForm.Invoke(rCallback, new Object[] { sRxMsg });

}
catch
{

// No support, normally at startup or close time
}

}
else
{

AddStatusMsg(sRxMsg);
}

}
/// <summary>

private void AddReceiveMsg(string sRxMsg)
///
/// Purpose: add a messge to the receive message window
/// Version: 13-NOV-20: NOS
/// </summary>
{

string sMsg;

sMsg = DateTime.Now.ToString() + ": " + sRxMsg;
rGuiForm.listBoxRxMessages.Items.Add(sMsg);

}
/// <summary>
public void AddReceivingMsgThread(string sRxMsg)
///
/// Purpose: update the receive window in the GUI, threadsafe
/// Version: 1.0: 11-OCT-20: NOS
/// </summary>
{

// InvokeRequired compares the thread IDs
if (rGuiForm.listBoxRxMessages.InvokeRequired == true)
{

try
{

AddReceivingMsgCallback rCallback = new
AddReceivingMsgCallback(addReceivingMsgThread);

rGuiForm.Invoke(rCallback, new Object[] { sRxMsg });
}
catch
{

// No support, normally at startup or close time
}

}
else
{

AddReceiveMsg(sRxMsg);
}

}

4 : define the event class for the event:

/// <summary>
public class UiEventArgs : EventArgs
///
/// Purpose: a public class for event messages for UI publisher/subscribe
/// Version: 14-NOV-20: NOS
/// </summary>
{

public int iCmd;
public int iCode;
public string sMsg;

}

5 : define the event handler in the LayerData class:

/// <summary>
public void publishUiEvent(UiEventArgs eArgs)

CHAPTER 1. DATA COMMUNICATION IN C# 35

///
/// Purpose: publisher event methods for sending events to the UI layer
/// Version: 13-NOV-20: NOS
/// </summary>
{

if (ePublishUiMsg != null)
{

ePublishUiMsg(this, eArgs);
}

}

The souce code snippets for making the either the server socket thread or the client socket thread:

/// <summary>
private bool makeSocketConnection(int iSocketMode, int iSockId, string sIpAddress)
///
/// Purpose: make a socket connection, ether server or client
/// Version: 12-NOV-20: NOS
/// </summary>
{

bool bValid;

ipAddress = IPAddress.Parse(sIpAddress);
iSocketPortId = iSockId;
switch (iSocketMode)
{

case (int)Constants.Socket.Server:
publishEventToUi((int)Constants.UiEventCmd.MsgStatusList,

"Server waits for clients to connect at IP address " + sIpAddress +
"...", iSocketMode);

iActiveSocketConnection = (int)Constants.Socket.Server;
/// Start the server thread
thSocketThread = new Thread(new ThreadStart(this.ServerSocketThread));
bValid = true;
break;

case (int)Constants.Socket.Client:
publishEventToUi((int)Constants.UiEventCmd.MsgStatusList,

"Client connects to IP address " + sIpAddress + "...", iSocketMode);
iActiveSocketConnection = (int)Constants.Socket.Client;
/// Start the client thread
thSocketThread = new Thread(new ThreadStart(this.ClientSocketThread));
bValid = true;
break;

default:
publishEventToUi((int)Constants.UiEventCmd.MsgStatusList,

"Socket error: Invalid socket mode = " + iSocketMode.ToString() + "!",
iSocketMode);

iActiveSocketConnection = (int)Constants.Socket.None;
bValid = false;
break;

}
thSocketThread.Start();
publishEventToUi((int)Constants.UiEventCmd.MsgSocketButton, "Disconnect",

iActiveSocketConnection);
return bValid;

}

The souce code snippets for the server socket thread, including the receive method:

/// <summary>
public void ServerSocketThread()
///
/// Purpose: thread for handling the server thread
/// Version: 16-NOV-20: NOS
/// </summary>
{

byte[] baBuffer;
/// make a TCP connection point based on the IP address and the port number
tcpListener = new TcpListener(ipAddress, iSocketPortId);
/// Start the listner connection to let clients to connect
tcpListener.Start();
/// wait for a client to connect to this conenction point (port ID)
tcpClient = tcpListener.AcceptTcpClient();
/// a client has connected, make a data stream for communicating with the client
tcpNetworkStream = tcpClient.GetStream();
/// send a start message
publishEventToUi((int)Constants.UiEventCmd.MsgStatusList,

"A client is connected at " + ipAddress.ToString() + "..", 0);
sendSocketMessage("Server at " + ipAddress.ToString() + " ready for chats ..");
/// Connected, wait for messages
while (bRunFlag == true)
{

/// wait for receiving a message from the client
baBuffer = new byte[64];
if (tcpNetworkStream.Read(baBuffer, 0, 64) > 0)
{

receiveSocketMsg(baBuffer);
}
Thread.Sleep(100);

}
/// close the data stream channel
if (tcpNetworkStream != null)
{

tcpNetworkStream.Close();
}
/// close the socket connection
if (tcpClient != null)
{

tcpClient.Close();
}

}

/// <summary>
private void receiveSocketMsg(byte[] baBuffer)
///
/// Purpose: receiving a data buffer from the socket connection
/// Version: 13-NOV-20: NOS
/// </summary>
{

string sBuffer;

sBuffer = Encoding.ASCII.GetString(baBuffer);
sBuffer = sBuffer.TrimEnd(’\0’);
publishEventToUi((int)Constants.UiEventCmd.MsgRxList, sBuffer, 0);
if (sBuffer.Equals(SOCKET_DISCONNECT_CMD) == true)

CHAPTER 1. DATA COMMUNICATION IN C# 37

{
closeSocketConnections();

}
}

The souce code snippets for the writing method, using the either the server or client socket:

/// <summary>
public bool sendSocketMessage(string sSendMsg)
///
/// Purpose: the message to send on an active socket connection
/// Version: 13-NOV-20: NOS
/// </summary>
{

bool bValid;
byte[] baBuffer;

switch (iActiveSocketConnection)
{

case (int)Constants.Socket.Server:
case (int)Constants.Socket.Client:

if (tcpNetworkStream != null)
{

baBuffer = Encoding.ASCII.GetBytes(sSendMsg);
tcpNetworkStream.Write(baBuffer, 0, baBuffer.Length);
bValid = true;

}
else
{

bValid = false;
}
break;

case (int)Constants.Socket.None:
default:

bValid = false;
break;

}
return bValid;

}

1.4.7 Security

Both the reading and writing functions are just sending plain strings (text buffers) that can easy can
be read by other applications, and these applications can also easy change the contents of the strings.
Adding any type of security requires another protocol on top of TCP/IP as TCP/IP is only handling data
buffers and the receivers must have some sort of protocol for decrypting the information. Applications
like Wireshark can very easly get all the data buffers for all TCP/IP connections on your computer.
Looking at Figure 1.21 the Presentation layer is normally containing any data security function. One

way to extend this application can be by crypting the strings before sending them and decrypt them
when receiving them. One easy way of doing this can be to add a number to each character in the string,
for example 2, meaning that the character A will be C, B will D and so one. The sender and receiver
must both agree on the coding so the receiver will, in this case, subtract 2 from each of the characters.
The string "Hello world" will then be transmitted as "Jgnnq yqtnf" as long as characters outside the
range A to Z and a to z will not be crypted/decrypted.

Bibliography

Bentham, J. (2002), TCP/IP Lean, Web servers for embedded systems, second edn, CMPBooks.

Comer, D. E. (1991), Internetworking with TCP/IP; Volume I; Principles, Protocols and Architecture,
second edn, Prentice-Hall International Editions.

Crowcroft, J. & Phillips, I. (2002), TCP/IP and Linux Implementation; Systems code for Linux Internet,
Wiley.

Elm (2016), ELM327 - OBD to RS232 Interpreter. Accessed FEB-2019.

Houldsworth, J. (1990), OSI Handbook, International Computers Ltd. (ICL), UK.

Levermore, G. J. (2000), Building Energy Management Systems Applications to Low-Energy HVAC and
Natural Ventilation Control, second edn, E and FN Spon.

Mahmoud, Q. H. (2004), Middleware for Communications, Wiley, West Sussex PO19 8SQ, England.

Stallings, W. (2001), Wireless communication and networks, Prentice-Hall International Editions.

Stevens, W. R. (1990), Unix networking programming, Prentice-Hall International Editions.

39

Index

adapter
USB to serial port adapter, 4

asynchronous communication, 2
at commands

attention commands, 7

controller area network
CAN bus, 7

crypt, 24

decrypt, 24

elm327 interface
ELM327, 7

EOBD
obd, 7

gps
global position system, 3

IoT, 23

loopback testing, 4

NMEA 183
gps, 4

OBD-2
obd, 7

OBD-II
obd, 7

On-board diagnostic
obd, 7

OSI model, 2, 21

publisher/subscribe, 31

rs-232c, 2
rs-422, 2
rs-485, 2

serial port
Close() method, 14
GetPortNames() method, 12
Open() method, 13
Read() method, 14
Write() method, 15

serial port adapter, 4
socket

Close() method, 22
connection, 21

GetHostName() method, 22
GetStream() method, 22
Ip Address, 22
Read() method, 23
TcpClient() method, 22
TcpListener() method, 22
Write() method, 23

synchronous communication, 2

TCP/IP protocol, 21

uart, 3
use case, 10

wireshark
TCP/IP packet analyzer, 24

41

	Preface
	Nomenclature
	1 Data communication in C#
	1.1 Introduction
	1.2 Serial port data communication
	1.2.1 Introduction
	1.2.2 Physical layer
	1.2.3 Asynchronous serial communication
	1.2.4 Communication protocols

	1.3 Serial port programming in C#
	1.3.1 Introduction
	1.3.2 Three tier architecture
	1.3.3 Serial port library
	1.3.4 Terminal console application

	1.4 Network communication programming in C#
	1.4.1 Introduction
	1.4.2 OSI model
	1.4.3 TCP/IP protocol
	1.4.4 Socket programming in C#
	1.4.5 Console test application
	1.4.6 GUI Chat application
	1.4.7 Security

	Bibliography
	Index

