
University of South-Eastern Norway Page 1

Data Communication
and

C# programming

Nils-Olav Skeie

Professor, PhD

University of South-Eastern Norway Page 2

Agenda

• Console application – 3 tier architecture

• Data Communication,

• Serial port communication,

• Serial port communication in C#,

• Protocols,

• OBD system,

• Network communication,

• Network communication in C#.

Internet: Network of networks

University of South-Eastern Norway Page 3

C# - Terminal Console application – three tier architecture

class Program
{

static void Main(string[] args)
{

ProgramSetupConsoleTerm rProgramSetupConsoleTerm;
rProgramSetupConsoleTerm = new ProgramSetupConsoleTerm();

}
}
class ProgramSetupConsoleTerm
{

LayerData rLayerData;
LayerBusiness rLayerBusiness;
LayerUser rLayerUser;

public ProgramSetupConsoleTerm()
{

rLayerData = new LayerData();
rLayerBusiness = new LayerBusiness(rLayerData);
rLayerUser = new LayerUser(rLayerBusiness);
rLayerUser.MainLoop();

}
}

University of South-Eastern Norway Page 4

Data Communication

• Communication between two or more computers,
• M2M – Machine to Machine communication,
• Need a protocol – set of rules on how to communicate.

• OSI model (Open System Interconnection).

University of South-Eastern Norway Page 5

Physical layer

• Wired

– Parallel or Serial

• Synchronization,

– Serial,

• Asynchronous

– RS232C, RS422, RS485.

• Synchronous

• Optical

• Wireless;

– ZigBee, Bluetooth, Ethernet, Wireless HART,

– Security; SSID, WPA (Wifi Protection Access)

Add synchronization

University of South-Eastern Norway Page 6

Asynchronous serial communication (RS-232C / RS-422 / RS-485)

• Communication parameters

– Baud rate (transmission speed)

• 300, 600, .. ,9600, 19200, 38400, .. , 115200

– Data bits (number of data bits)

• 7 or 8

– Parity (Error detection)

• N:None, O:Odd, E:Even

– Stop bits (number of stop bits)

• 1, 1.5, 2

University of South-Eastern Norway Page 7

Asynchronous serial communication (RS-232C / RS-422 / RS-485)

• UART
– universal asynchronous receiver-transmitter,

– FIFO buffer in receiver,

• First in first out,

• 16 characters,

– Parity checking and error,

– Framing error.

University of South-Eastern Norway Page 8

C# programming

• Part of the «Systems.IO.Ports» directive,

• Can be used as a file;

– Open, read, write and close.

• Make a serial port object

• Open the port with the correct parameters,

– Transmitter and receiver must agree on the same parameters,

– Baud rate, data bits, parity, stop bits.

• Read and write to the port,

– Read will normally not finish unless any characters are received,

– Set the timeout parameters to get a timeout exception.

• Close the port when finished!

University of South-Eastern Norway Page 9

Select serial port – list available serial ports

• using System.IO.Ports;

• string[] saComPortsNames;

• try

{

saComPortsNames =

SerialPort.GetPortNames();

}

catch

{

saComPortsNames = null;

}

University of South-Eastern Norway Page 10

public bool Open(string sPortName, out string sOpenMsg)

{

if (bOpenPort == true)

Close();

try

{

rSerialPort = new SerialPort(sPortName, 4800, Parity.None, 8, StopBits.One);

rSerialPort.ReadTimeout = 500;

rSerialPort.Open();

sOpenMsg = "Open <" + sPortName + "> serial port OK!";

bOpenPort = true;

}

catch (Exception e)

{

sOpenMsg = "Error open <" + sPortName + "> serial port: " + e.Message;

bOpenPort = false;

}

return bOpenPort;

}

Open()

University of South-Eastern Norway Page 11

bMsgBuf = new byte[iCntMax + 64];
iOffset = 0;
try
{

while (iOffset < iCntMax)
{

iOffset += rSerialPort.Read(bMsgBuf, iOffset, (bMsgBuf.Length - iOffset));
}
for (iMsgCnt = 0; iMsgCnt < iOffset; iMsgCnt++)
{

sMsgBuf = sMsgBuf + Convert.ToChar(bMsgBuf[iMsgCnt]);
}

}
catch (TimeoutException)
{

if (iOffset > 0)
{

for (iMsgCnt = 0; iMsgCnt < iOffset; iMsgCnt++)
{

sMsgBuf = sMsgBuf + Convert.ToChar(bMsgBuf[iMsgCnt]);
}

}
}

Read()
public string Read(int iCntMax, bool bTimeoutMsg)
{

int iLen = 0, iMsgCnt, iOffset;
string sMsgBuf = “”;
byte[] bMsgBuf;
try
{

try { // Read function ➔ }
catch (Exception e)
{

sMsgBuf = sMsgBuf + "<Exc=" + e.Message + ">";
}

}
catch (Exception e)
{

sMsgBuf = sMsgBuf + "<PortErr=" + e.Message + ">";
}
return sMsgBuf;

}

University of South-Eastern Norway Page 12

Communication protocols

• Loopback testing;

– Interconnect TxD and RxD pins.

• GPS protocol;

– NMEA protocol,

– Transmitting cyclic messages.

• OBD protocol

– Send request,

– Wait for answer,

• About 200 mSec.

University of South-Eastern Norway Page 13

OBD protocol
1. Setup serial port;

1. 9600 Baud, 8 data bits, Parity None, 1 Stop bit.

2. Reset port:
1. Send “ATZ”,
2. Response is ELM327 version: ELM327v1.5<CR>

3. Select OBD protocol automatically,
1. Send “ATSP 0”,
2. Response is OK

4. Get ODB protocol (if wanted)
1. Send “AT DP”,
2. Response is AUTO,ISO 15765-4 (CAN11/500) (Example)

5. Get overview of PID support (optionally)
1. Send 01 00
2. Wait minimum 3 seconds
3. Response is 41 00 + four bytes with active bits for

active commands.

6. Standard commands: OK response is service code +
40

University of South-Eastern Norway Page 14

OBD protocol – standard commands

• Service value;

– 01

• Request type;

– 01 + PID

– Speed: 010D

• Response;

– 41 + PID + Value

• Standard PIDs;

• Special PIDs;

University of South-Eastern Norway Page 15

Reading service 01 values: current data

• Start getting values
– Send text buffer;

• Service code + PID code + <CR>

– Wait 500 mSec.
– Read serial port

• Status + PID code + answer + <CR>

– Get next value, or first value

• Examples:
– Send 010D<CR> : Answer 410D1C <CR>

• PID: Speed = 0x0D
• Speed: 1C = 28 km/h

– Send 010C<CR>: Answer 410C541B<CR>
• PID: RPM = 0x0C
• RPM: A= 0x54 = 84 / B=0x1B = 27
• RPM = ((A*256) +B) / 4 = 5382.75

Tx Mode Pid <CR>

Rx Status Pid Data <CR>

Status OK = Mode + 0x40

University of South-Eastern Norway Page 16

OBD system (basic functionality)

In the car:

• OBD only working with ignition on,

• No connection with the cloud system,

• Hands free solution,
– No input if speed > 5 km/h ?

• Init ELM27 device,

• Start reading a set of parameters,

• Save values on CVS file,
– Date and Time, Value #1, Value #2, .. <CR>

• Go back reading and updating the
parameters.

After driving the car:

• Upload the CVS file into the system,

• Update database/cloud system,

• Update new driving info,

– Car usage,

– Fuel cost,

– Service cost,

– MOT (PKK) information,

– ….

University of South-Eastern Norway Page 17

Serial port demo

• Loopback test;

– Testing of local hardware and software.

• NMEA / GPS data;

– Any data inside?

• Temp / Light data from an Arduino device;

– Sending data every 5th second.

• OBDII data?

University of South-Eastern Norway Page 18

Transport layer

TCP/IP using several parameters:
• TCP/IP address;

• IP v4 or IP v6,
• Protocol type;

• TCP or UDP,
• Port number;

• «Reserved» 0 - 1023
• «Free» 1024 - …

University of South-Eastern Norway Page 19

TCP/IP communication

• Using a socket,

• Based on server / client,
– Minimum two applications,

• Server and minimum one client,

– Communication media,
• Owns by the server,

• Server makes «Listner» socket,

– Client(s) connect.
• To server «Listner» socket,

• TCP/IP address,

– Same protocol type and port
number.

University of South-Eastern Norway Page 20

C# programming (server)

• Get the IP address of the node:

• Server setup:

• Create a socket connection between the server and client:

• Close connection after the communication: (tcpNetworkStream and tcpClinet)

University of South-Eastern Norway Page 21

C# programming (client)

• Get the IP address of the node: (must adjust to the remote node)

• Connect to the server:

• Connect to the socket connection:

• Close connection after the communication: (tcpNetworkStream and tcpClinet)

University of South-Eastern Norway Page 22

C# programming (read and write)

• The socket stream will be used for reading and writing bytes,

– Need some sort of protocol to understand the contents,

– TCP/IP is NOT defining any way of coding the information.

• Reading:

• Writing:

University of South-Eastern Norway Page 23

C# programming – console application

• Start the server as a thread,
• Two commands:

• LIST: IP address of the server
• QUIT: stop the server and client

• Source code in the compendium.

• Extension:
• Two applications?
• More commands?

• Graphical CHAT application

