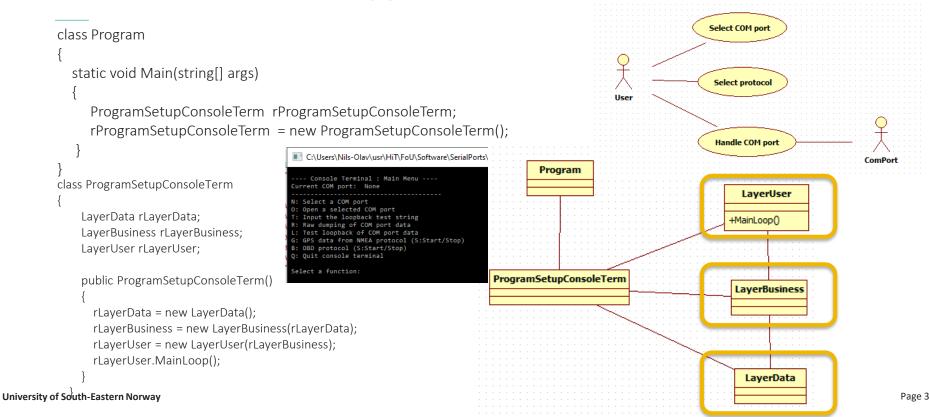
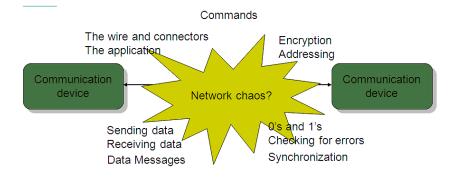

Data Communication and C# programming

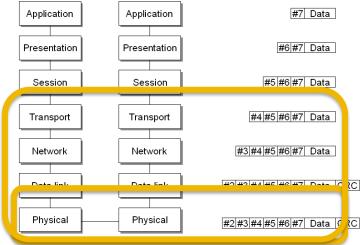
Nils-Olav Skeie Professor, PhD

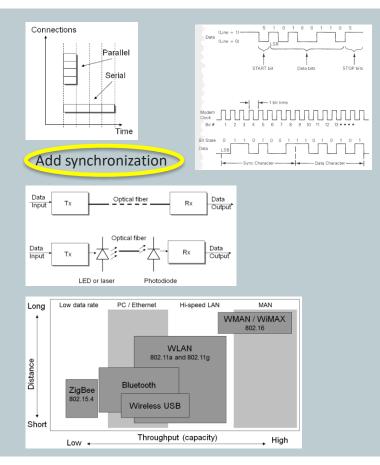


Internet: Network of networks


Agenda

- Console application 3 tier architecture
- Data Communication,
- Serial port communication,
- Serial port communication in C#,
- Protocols,
- OBD system,
- Network communication,
- Network communication in C#.


C# - Terminal Console application – three tier architecture

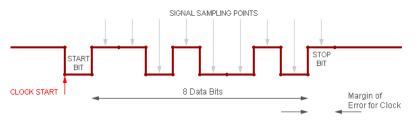


Data Communication

- Communication between two or more computers,
- M2M Machine to Machine communication,
- Need a protocol set of rules on how to communicate.
- OSI model (Open System Interconnection).

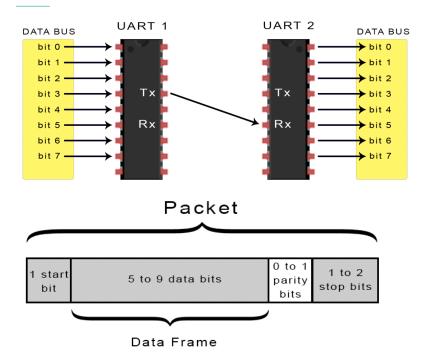


Physical layer


- Wired
 - Parallel or Serial
 - Synchronization,
 - Serial,
 - Asynchronous
 - RS232C, RS422, RS485.
 - Synchronous
- Optical
- Wireless;
 - ZigBee, Bluetooth, Ethernet, Wireless HART,
 - Security; SSID, WPA (Wifi Protection Access)

Asynchronous serial communication (RS-232C / RS-422 / RS-485)

Asynchronous Transmission



Asynchronous Character: 8 Data Bits, One Stop Bit

- Communication parameters
 - Baud rate (transmission speed)
 - 300, 600, ...,9600, 19200, 38400, ..., 115200
 - Data bits (number of data bits)
 - 7 or 8
 - Parity (Error detection)
 - N:None, O:Odd, E:Even
 - Stop bits (number of stop bits)
 - 1, 1.5, 2

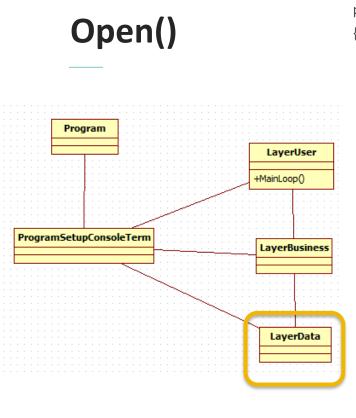
Asynchronous serial communication (RS-232C / RS-422 / RS-485)

- UART
 - universal asynchronous receiver-transmitter,
 - FIFO buffer in receiver,
 - First in first out,
 - 16 characters,
 - Parity checking and error,
 - Framing error.

C# programming

<pre>while (iOffset < iCntMax) { iLen = rSerialPort.Re</pre>	ad(bMsgBuf, iOffset, (bMsgBuf.Length - iOffset));	Soluti	ion
iOffset += iLen;	int SerialPort.Read(byte[] buffer, int offset, int count) (+ 1 overload)		tie
} for (iMsgCnt = 0; iMsgCnt	Reads a number of bytes from the SerialPort input buffer and writes those bytes into a byte array at the specified	offset.	
<pre>{ sMsgBuf = sMsgBuf + (}</pre>	Exceptions: ArgumentNullException InvalidOperationException		r
<pre>ch (TimeoutException)</pre>	ArgumentOutOfRangeException ArgumentException TimeoutException		
// Do nothing			

- Read and write to the port,
 - Read will normally not finish unless any characters are received,
 - Set the timeout parameters to get a timeout exception.
- Close the port when finished!


Select serial port – list available serial ports

```
    using System.IO.Ports;

                                                        C:\Users\Nils-Olav\usr\HiT\FoU\Software\SerialPorts\NosCo...
                                                        ---- Console Terminal : Main Menu ----

    string[] saComPortsNames;

                                                        Current COM port: None
                                                        N: Select a COM port
•
  trv
                                                        O: Open a selected COM port
                                                        T: Input the loopback test string
                                                        R: Raw dumping of COM port data
                                                        L: Test loopback of COM port data
      saComPortsNames =
                                                        G: GPS data from NMEA protocol (S:Start/Stop)
                                                        B: OBD protocol (S:Start/Stop)
                  SerialPort.GetPortNames();
                                                        Q: Quit console terminal
                                                        Select a function:n
  catch
                                                        Number of available COM ports =
                                                        1: COM5
                                                        2: COM1
                                                        3: COM9
      saComPortsNames = null;
                                                        Select id for COM port:
```


public bool Open(string sPortName, out string sOpenMsg)

```
if (bOpenPort == true)
```

```
Close();
```

```
try
```

```
rSerialPort = new SerialPort(sPortName, 4800, Parity.None, 8, StopBits.One);
rSerialPort.ReadTimeout = 500;
rSerialPort.Open();
sOpenMsg = "Open <" + sPortName + "> serial port OK!";
bOpenPort = true;
```

```
catch (Exception e)
```

sOpenMsg = "Error open <" + sPortName + "> serial port: " + e.Message; bOpenPort = false;

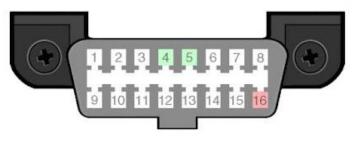
return bOpenPort;

Read()

```
public string Read(int iCntMax, bool bTimeoutMsg)
   int iLen = 0, iMsgCnt, iOffset;
   string sMsgBuf = "";
   byte[] bMsgBuf;
   try
       try { // Read function \rightarrow }
       catch (Exception e)
          sMsgBuf = sMsgBuf + "<Exc=" + e.Message + ">";
   catch (Exception e)
      sMsgBuf = sMsgBuf + "<PortErr=" + e.Message + ">";
   return sMsgBuf;
```

```
bMsgBuf = new byte[iCntMax + 64];
iOffset = 0;
try
   while (iOffset < iCntMax)
       iOffset += rSerialPort.Read(bMsgBuf, iOffset, (bMsgBuf.Length - iOffset));
    for (iMsgCnt = 0; iMsgCnt < iOffset; iMsgCnt++)</pre>
        sMsgBuf = sMsgBuf + Convert.ToChar(bMsgBuf[iMsgCnt]);
catch (TimeoutException)
    if (iOffset > 0)
       for (iMsgCnt = 0; iMsgCnt < iOffset; iMsgCnt++)
            sMsgBuf = sMsgBuf + Convert.ToChar(bMsgBuf[iMsgCnt]);
```

Communication protocols


- Loopback testing;
 - Interconnect TxD and RxD pins.
- GPS protocol;
 - NMEA protocol,
 - Transmitting cyclic messages.
- OBD protocol
 - Send request,
 - Wait for answer,
 - About 200 mSec.

Performance		Interface	whether the state
Antenna:	integrated patch antenna	Protocol:	NMEA-0183, RS-232, 8-N-1
Frequency:	1575.42MHz (L1), C/A code	Data rate:	4800 bps
Sensitivity:	-140dBm (typical)	NMEA message:	GGA, GLL,
Channels:	12 simultaneously "all-in-view"		GSA, GSV, RMC, and VTG
	tracking	Fuysicar	
Operation modes:	2D/3D automatic selection	Dimension:	57mm x 49mm x 21mm (2.2" x
Acquisition time:	cold start: 45 sec		1.9" x 0.8")
	warm start: 40 sec hot start: 8 sec	Weight:	68 gram w/o Cable (2.4oz)
Reacquisition:	0.1 sec	Environmental	
Position update:	1Hz	Temperature:	Operation: -20° to 80° C
Accuracy:	15m 2D-RMS, (95%)		Storage: -30° to 90° C
Electrical			
Primary power:	3.5 - 5.5Vdc	Dynamics:	Altitude<20km
Current:	165 mA max.		Velocity<900km/h

OBD protocol

- 1. Setup serial port;
 - 1. 9600 Baud, 8 data bits, Parity None, 1 Stop bit.
- 2. Reset port:
 - 1. Send "ATZ",
 - 2. Response is ELM327 version: ELM327v1.5<CR>
- 3. Select OBD protocol automatically,
 - 1. Send "ATSP 0",
 - 2. Response is OK
- 4. Get ODB protocol (if wanted)
 - 1. Send "AT DP",
 - 2. Response is AUTO, ISO 15765-4 (CAN11/500) (Example)
- 5. Get overview of PID support (optionally)
 - 1. Send 01 00
 - 2. Wait minimum 3 seconds
 - 3. Response is 41 00 + four bytes with active bits for active commands.
- 6. Standard commands: OK response is service code + 40

Data Link Connector (vehicle OBDII port)

- 1 Make/Model Specific
- 2 SAE J1850-PWM POS(+) or SAE J1850-VPW POS(+)
- 3 Make/Model Specific
- 4 Chassis Ground (all protocols)
- 5 Signal Ground (all protocols)
- 6 ISO15765-4 CAN-Bus High
- 7 ISO9141-2 K-Line or ISO14230-4 KWP2000 K-Line
- 8 Make/Model Specific
- 9 Make/Model Specific
- 10 SAE J1850-PWM NEG(-)
- 11 Make/Model Specific
- 12 Make/Model Specific
- 13 Make/Model Specific
- 14 ISO15765-4 CAN-Bus Low
- 15 ISO9141-2 L-Line or ISO14230-4 KWP2000 L-Line
- 16 +12v (always on) (all protocols)

OBD protocol – standard commands

- Service value;
 - 01
- Request type;
 - 01 + PID
 - Speed: 010D
- Response;
 - 41 + PID + Value[®]
- Standard PIDs;
- Special PIDs;

4 4 2 2 1 1 1 1	0	PIDs supported [01 - 20]				
2 2 1 1						Bit encoded [A7D0] == [PID \$01PID \$20] See below
2 1 1		Monitor status since DTCs cleared. (Includes malfunction indicator lamp (MIL) status and number of DTCs.)				Bit encoded. See below
1	2	Freeze DTC				
1	3	Fuel system status				Bit encoded. See below
-	4	Calculated engine load	0	100	%	$\frac{100}{255}A$ (or $\frac{A}{2.55}$)
1	5	Engine coolant temperature	-40	215	°C	A-40
	6	Short term fuel trim—Bank 1				
1	7	Long term fuel trim—Bank 1	-100 (Reduce	99.2 (Add Fuel: Too	%	$\frac{100}{128}A-100$
1	8	Short term fuel trim—Bank 2	Fuel: Too Rich)	Lean)		(or $\frac{A}{1.28} - 100$)
1	9	Long term fuel trim—Bank 2		Louiny		$\left(0 \frac{1}{1.28} - 100\right)$
1	10	Fuel pressure (gauge pressure)	0	765	kPa	3 <i>A</i>
1	11	Intake manifold absolute pressure	0	255	kPa	A
2	12	Engine RPM	0	16,383.75	rpm	$\frac{256A+B}{4}$
1	13	Vehicle speed	0	255	km/h	A
1	14	Timing advance	-64	63.5	° before TDC	$rac{A}{2}-64$
1	15	Intake air temperature	-40	215	°C	A-40
2	16	MAF air flow rate	0	655.35	grams/sec	$\frac{256A+B}{100}$
1	17	Throttle position	0	100	%	$rac{100}{255}A$
1	18	Commanded secondary air status				Bit encoded. See below
	19	Oxygen sensors present (in 2 banks)				[A0A3] == Bank 1, Sensors 1-4. [A4A7] == Bank 2
	16 17 18	2	2 MAF air flow rate 1 Throttle position 1 Commanded secondary air status 1 Oxygen sensors present (in 2 banks)	2 MAF air flow rate 0 1 Throttle position 0 1 Commanded secondary air status 0	2 MAF air flow rate 0 655.35 1 Throttle position 0 100 1 Commanded secondary air status	2 MAF air flow rate 0 655.35 grams/sec 1 Throttle position 0 100 % 1 Commanded secondary air status - - - 1 Oxygen sensors present (in 2 banks) - - -

Reading service 01 values: current data

- Start getting values
 - Send text buffer;
 - Service code + PID code + <CR>
 - Wait 500 mSec.
 - Read serial port
 - Status + PID code + answer + <CR>
 - Get next value, or first value
- Examples:
 - Send 010D<CR> : Answer 410D1C <CR>
 - PID: Speed = 0x0D
 - Speed: 1C = 28 km/h
 - Send 010C<CR>: Answer 410C541B<CR>
 - PID: RPM = 0x0C
 - RPM: A= 0x54 = 84 / B=0x1B = 27
 - RPM = ((A*256) +B) / 4 = 5382.75

Тх	Mode	Pid	<cr></cr>	
Rx	Status	Pid	Data	<cr></cr>

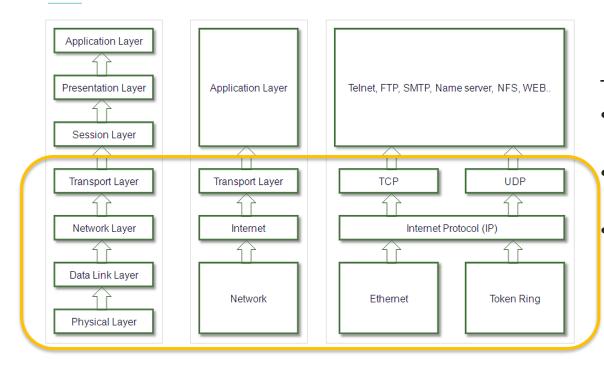
Status OK = Mode + 0x40

	OD.	11	1	make mannor	200	- KFa	А
	ØC	12	2	Engine RPM	16,383.75	rpm	$\frac{256A+B}{4}$
L	0D	13	1	Vehicle speed	255	km/h	A
						⁰ hoforo	A

OBD system (basic functionality)

In the car:

- OBD only working with ignition on,
- No connection with the cloud system,
- Hands free solution,
 - No input if speed > 5 km/h ?
- Init ELM27 device,
- Start reading a set of parameters,
- Save values on CVS file,
 - Date and Time, Value #1, Value #2, .. <CR>
- Go back reading and updating the parameters.

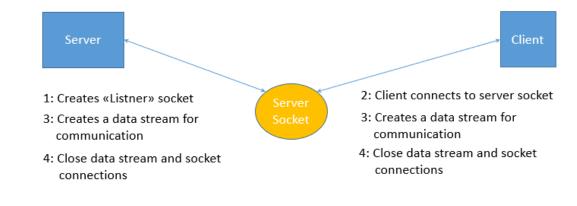

After driving the car:

- Upload the CVS file into the system,
- Update database/cloud system,
- Update new driving info,
 - Car usage,
 - Fuel cost,
 - Service cost,
 - MOT (PKK) information,
 -

Serial port demo

- Loopback test;
 - Testing of local hardware and software.
- NMEA / GPS data;
 - Any data inside?
- Temp / Light data from an Arduino device;
 - Sending data every 5th second.
- OBDII data?

Transport layer



TCP/IP using several parameters:

- TCP/IP address;
 - IP v4 or IP v6,
 - Protocol type;
 - TCP or UDP,
- Port number;
 - «Reserved» 0 1023
 - «Free» 1024 ...

TCP/IP communication

- Using a socket,
- Based on server / client,
 - Minimum two applications,
 - Server and minimum one client,
 - Communication media,
 - Owns by the server,
 - Server makes «Listner» socket,
 - Client(s) connect.
 - To server «Listner» socket,
 - TCP/IP address,
 - Same protocol type and port number.

C# programming (server)

• Get the IP address of the node:

```
Server: Available IP addresses for the server node:
IP adrress[1] = fe80::24fb:a678:c327:aaaa%9
IP adrress[2] = 2a01:799:ae0:800:70fe:ab1:31c:6bef
IP adrress[3] = 2a01:799:ae0:800:24fb:a678:c327:aaaa
IP adrress[4] = 192.168.13.195
```

```
ipHostInfo = Dns.GetHostEntry(Dns.GetHostName());
ipAddress = ipHostInfo.AddressList[0];
```

• Server setup:

```
tcpListener = new TcpListener(ipAddress, iSocketPortId);
tcpListener.Start(5);
```

• Create a socket connection between the server and client:

```
tcpClient = tcpListener.AcceptTcpClient();
tcpNetworkStream = tcpClient.GetStream();
```

• Close connection after the communication: (tcpNetworkStream and tcpClinet)

C# programming (client)

• Get the IP address of the node: (must adjust to the remote node)

```
ipHostInfo = Dns.GetHostEntry(Dns.GetHostName());
ipAddress = ipHostInfo.AddressList[0];
```

• Connect to the server:

```
tcpClient = new TcpClient(ipAddress.ToString(), iSocketPortId);
```

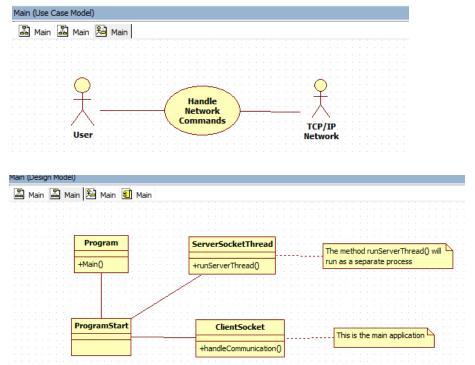
• Connect to the socket connection:

```
tcpNetworkStream = tcpClient.GetStream();
```

• Close connection after the communication: (tcpNetworkStream and tcpClinet)

C# programming (read and write)

- The socket stream will be used for reading and writing bytes,
 - Need some sort of protocol to understand the contents,
 - TCP/IP is NOT defining any way of coding the information.
- Reading:


```
byte[] baBuffer = new byte[64];
int iLen = tcpNetworkStream.Read(baBuffer);
String sBuffer = Encoding.ASCII.GetString(baBuffer);
sBuffer = sBuffer.TrimEnd('\0');
```

• Writing:

```
string sBuffer = DateTime.Now.ToString() + ": Server command=<" + sBuffer + ">";
byte[] baBuffer = Encoding.ASCII.GetBytes(sBuffer);
tcpNetworkStream.Write(baBuffer);
```

C# programming – console application

- Start the server as a thread,
- Two commands:
 - LIST: IP address of the server
 - QUIT: stop the server and client
- Source code in the compendium.
- Extension:
 - Two applications?
 - More commands?
- Graphical CHAT application

