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Summary: 

Kelda Drilling Controls has developed a hydraulic drilling simulator, which needs a graphical user inter-
face (GUI) to be easily operated. The GUI is intended for training, simulation and testing purposes and 
for visualizing and comparing controllers in oil-drilling scenarios. 

The goals of this project were to develop an easy-to-use GUI with a selected set of features. In addition 
one of the tasks was to design and integrate a proportional-integral (PI) controller for downhole pressure 
used as a reference for Kelda’s model-based controller. 

The GUI was designed with LabVIEW. The PI controller was developed using Skogestad’s method. 
Scrum, test-driven development (TDD) and automatic documentation was used in order to cooperate 
closely with Kelda. 

The features of the developed GUI include visual data logging of key values, interactive process flow 
diagram, input acquisition from joysticks and pre-recorded values, selectable pressure controller, well 
configuration, status bar and adjustable simulation speed. These features satisfy the GUI requirements 
while being easy to use. 

A PI controller with gain scheduling and feed forward control was developed. With the derived control 
parameters, the controller satisfies the deviation requirements of 2.5-5 bars after rig pump disturbances, 
power loss and changes in set point. 

Using scrum has enabled the project group to collaborate closely with Kelda, thus providing Kelda with 
a satisfactory product. Using TDD has made the code more robust. The automatic documentation gener-
ation has provided Kelda with a good basis for further development. 
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FOREWORD 

This report is a bachelor thesis written by three students of Computer Science and Industrial Au-
tomation at Telemark University College. It is written in the 6th semester for Kelda Drilling Con-
trols. The project description is found as Attachment A, the sprint plan as Attachment B and the 
sprint report as Attachment C. 

Intermediate understanding of LabVIEW programming and control engineering is required to fully 
understand the report. 

As a part of the project task, a blog was created which can be found here: 
http://wellheads.blogg.no/. 

The computer tools used in this project are: 

 Development: LabVIEW  

 Calculations: Maple 

 Tables: Microsoft Excel 

 Figures: Microsoft Visio and Paint.NET 

 Report and attachments: Microsoft Word 

 Project management: Scrumwise 

 Version control: SourceTree 

We wish to thank Kelda for the close collaboration. 

 

Place, date: 

                                                                    

Glenn Bitar 

                                                                    

Martin Bergene Johansen  

                                                                    

Eirik Siljan  
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TERMINOLOGY 

Annulus – The void between the drill string and the well walls 

API – Application Programming Interface 

BHA – Bottom Hole Assembly 

BOP – Blowout Preventer 

BPP – Back Pressure Pump 

Connection – The process of extending the drill string by connecting additional pipe 

CSS – Cascading Style Sheets 

CSV – Comma-Separated Values 

DHP – Downhole Pressure 

Drill cuttings – Residue removed from the well during drilling 

GUI – Graphical User Interface 

HD – High Definition – Used to describe screen resolutions of 1920 x 1080 pixels (in context of 
screen size) 

HD – Horizontal Deviation (in context of trajectory configuration) 

HTML – Hyper Text Markup Language 

iMPD – Intelligent Managed Pressure Drilling 

MD – Measured Depth 

MPD – Managed Pressure Drilling 

PDF – Portable Document Format 

PFD – Process Flow Diagram 

PI – Proportional Integral – Describes controllers 

TD – Top Drive – Mechanical device on oil rig which provides torque to the drill string 

TDD – Test Driven Development 

TVD – True Vertical Depth 

VI – Virtual Instrument – A subprogram in LabVIEW 
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1 INTRODUCTION 

1.1 Background 

Kelda Drilling Controls focuses on a technology called MPD, which relies on a BPP and a choke 
located by the mud pit to ensure pressure control. Kelda is developing a hydraulic drilling simula-
tor used for operator training and for testing and demonstrating solutions for estimating and con-
trolling DHP. Kelda is also developing a model-based DHP controller to be used in hydraulic 
drilling. 

1.2 Task Description 

This report covers the development of a GUI based on the hydraulic simulator Kelda is developing. 
The GUI is made to make it easy for an operator to use the simulator for exploration of different 
scenarios. It should be visually appealing, easy to use and utilize the functionality in the simulator. 
Since the simulator is under development, the team will work closely with Kelda and adapt the 
GUI to the simulator as it develops. Kelda has specified that the GUI is to be developed in Lab-
VIEW, but it should have a custom design. 

The GUI should have the following features: 

 Visual data logging of key values 
 Interactive PFD 
 Input acquisition from joysticks and pre-recorded values 
 Selectable pressure controller 
 Well configuration 
 Status bar 
 Adjustable simulation speed 

The report also covers the development of a PI controller, which is going to be used as a reference 
for Kelda’s model-based DHP controller. 

Since the group works closely with Kelda, a part of the project is to learn and utilize certain project 
management methods and development tools. These are: 

 Scrum, a project management method 

 TDD, a development method 

 Bitbucket and Sourcetree, tools for version control of source code 

 Automatic documentation 

1.3 Project Goals 

The goals of the project are: 

 Create an easy-to-use GUI for the oil drilling simulator Kelda is developing 

 Create a PI controller used as reference for Kelda’s model-based DHP controller 

 Use the described methods and tools to help collaborate closely with Kelda 

1.4 Constraints 

Using TDD to develop a GUI is not feasible, thus the project group has decided to create tests for 
functions that are independent and mathematical in nature. The group has also decided to use 
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HTML rather than LaTeX for automatic documentation, since it is highly customizable with clas-
ses and CSS stylesheets. It has been decided to use a PFD rather than a P&ID to describe the 
process in the application, since the instrumentation is not of interest in that context. The controller 
is developed in LabVIEW rather than Simulink, which makes it unnecessary to import controller-
functions into the LabVIEW environment. These decisions have been made in consultation with 
Kelda. Since Scrum is used in the project, it is possible for the customer to adjust specifications 
for every sprint. 

1.5 Report Overview 

Chapter 2 contains background information about the project. 

Chapter 3 contains information about the project management methods and development tools. 

Chapter 4 describes the GUI as a final product. 

Chapter 5 describes the solutions used to develop the GUI. 

Chapter 6 describes the development of the PI controller. 

Chapter 7 presents the discussion of the methods, solutions and results discovered. 

Chapter 8 is the report’s conclusion. 
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2 BACKGROUND 

Kelda Drilling Controls creates simulators and models that resemble real-life oil drilling scenarios. 
They also create model-based controllers that enable safe drilling in challenging environments. 
The simulators require good GUIs that allow their users to engage in the scenarios they model. 
The model-based controllers need to be benchmarked and compared to conventional controllers. 

This chapter contains background information and research of both oil drilling and GUI practices. 
It also contains information about Straume Simulator Core. 

2.1 Oil Drilling 

In drilling it is important to control the DHP to avoid fracturing or collapsing the well. Tradition-
ally this is done by pumping drill mud with variable density through the drill string. Two situations 
that can be avoided through good DHP control is clogging and kicks. Clogging can be caused by 
insufficient flow in the annulus, and changes in temperature and pressure causing asphaltene to 
destabilize and precipitate [1]. Kicks are sudden increases in well pressure and may be caused by 
gas leaking into the well from pores, or from wall collapses. A kick is a dangerous incident and 
must be dealt with quickly. Equipment that failed to handle a kick correctly was one of the causes 
of the BP disaster in the Mexico Gulf in 2010 [2]. To avoid kicks there are three pressure limits to 
consider during drilling: 

 Collapse pressure – The lowest value the DHP can have before there is a serious risk of 
well collapse. If the DHP falls below this limit, the walls of the well may collapse and 
break the drill string or clog the annulus. 

 Pore pressure – The pressure the ground exerts on the annulus. If the DHP falls below 
this pressure, the risk of kick increases. 

 Fracture pressure – The maximum pressure the well walls tolerate without fracturing. If 
the well walls fracture, the well might clog, meaning that extraction of oil and gas would 
prove difficult, and valuable drilling mud could be lost. 

In conventional drilling, the DHP is controlled only by modifying the density of the drilling mud 
and by increasing mud flow into the well. This method is relatively cheap, but does not allow for 
drilling in challenging oil and gas reservoirs, as the process is slow and inaccurate. See Figure 2.1. 
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Figure 2.1: Conventional Drilling 

Good DHP control is essential in order to have an efficient and safe drilling process. MPD is the 
method of controlling DHP using a choke valve and a back pressure pump to limit the amount of 
outflow from the annulus while ensuring sufficient flow through the choke for an effective control. 
This is illustrated in Figure 2.2. By comparison, conventional drilling controls DHP using only 
drilling mud density and rig pump flow. 
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Figure 2.2: Managed Pressure Drilling 

iMPD uses a more advanced controller based on a mathematical model to detect kicks early and 
to achieve more accurate DHP control. This allows for drilling in more challenging ground condi-
tions with slimmer pressure limits. 
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Figure 2.3: BOP 

The BOP, as illustrated in Figure 2.3, is a safety component placed on the seabed [3]. If a well 
becomes too unstable, or an uncontrollable kick is detected, the BOP can seal the well, or initiate 
the kill line [4]. The kill line leads heavy mud directly into the annulus in order to increase DHP, 
to stop any influx from the well walls into the well. In addition, the BOP can use the annular valve 
to limit outflow from the annulus. 

2.2 GUI Practices 

The conclusions of this chapter is based on [5]. 

GUIs are the operators’ window into a process and is one of the major interfaces on an interactive 
system. Creating an intuitive and effective GUI is important in every aspect of process industry. 
As human capability to absorb and understand information has not increased at the same rate of a 
GUI’s ability to display information, it is necessary to design a GUI that supports the operator. 

2.2.1 Font Size 

By using Equation (2.1) it is possible to calculate recommended text height for use in the GUI. 

 
� =

� ∙ �

3438
 (2.1) 

In Equation (2.1), “H” is height of text, “A” is the angle in minutes (recommended between 16-22 
minutes), “D” is distance from monitor and “3438” is the conversion factor from minutes to radi-
ans. A minute angle is 1/60 of 1 degree. 

 

Figure 2.4: Illustration of Font Angle [5] 
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2.2.2 Using Colors 

The use of color is a difficult area in GUI design. It is important to know that about 8% of men 
and 0.5% of women suffer some form of colorblindness. For that reason, it is important not to rely 
heavily on the use of colors to convey information. A GUI should be viable in grayscale as well 
as with colors. Colors should be used for enhancing information, and not solely display it. If using 
colors to display information, it is recommended to use shapes and placements to enhance the 
conveyed message. 

2.2.3 Human Errors 

To reduce room for errors, it is favorable to avoid relying on the operator to memorize significant 
amounts of information. Much like remembering a phone number, an operator should not remem-
ber more than 3-9 chunks of information at any given time. The word “Stop” can be seen as a 
single chunk of information due to its global meaning, while the serial number “F34B” offers no 
global meaning and should therefore be considered as four chunks of information. A way to reduce 
memory load on the operator is to have data history available. This can be done using a graph, 
which shows the trend of a process. 

Human error often occur when the environment leads the operator down an unknown path, and 
must therefore improvise. On the other hand, the operator can have an error of omission, where it 
is a well-known situation, but the operator omits a step or performs a wrong one. One solution to 
this problem is decision-support. 

2.2.4 Operator Behaviors 

Among operators, there are two types of behaviors: management-by-exception and management-
by-awareness. Management-by-exception means the operator waits for an exception to occur be-
fore dealing with it. This is demands near nil effort to monitor the process, but includes the incon-
venience of not being able to avert a problem before it becomes quite noticeable. Whereas man-
agement-by-awareness means the operator will monitor key variables to make sure the process 
runs smoothly. This has the advantage of being able to catch and avert a situation before it becomes 
a problem. 

In an unstable process, management-by-awareness might not be possible as the developments ap-
pear random and are hard to look for. While in a stable process, management-by-awareness lets 
the operator look for developments and take action before the incident appears. 

Management-by-exception is better suited for a complex and unstable process. This is because 
there are no patterns to look for, as they may seem random. 

2.3 Straume Simulator Core 

The simulator core is based on a mathematical model of a drilling process, and is a discrete time 
simulation. It shows the development of pressure, flow and temperature in an oil drilling system 
over time. It takes a well configuration, containing information about drilling mud, temperature, 
trajectory, diameters and several other parameters. It also takes control-values like back pressure 
pump flow, choke opening, gas influx and more. From the current state of the simulator, using the 
current control values and the configuration, it is possible to step the simulator to calculate the 
next state. This is illustrated in Figure 2.5. 
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Figure 2.5: Simulator Step Function 

The configuration and control values, as well as the simulator core outputs are described in At-
tachment D. 
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3 WORKFLOW 

The task specifies several tools and methods that are to be used in the project. These are necessary 
to work closely with Kelda, and to ensure continuity in the development process. The tools and 
methods are described in this chapter. 

3.1 Scrum 

Scrum is a method of executing complex projects, mainly used for software development. It uses 
frequent team meetings, called stand ups, as a tool to detect problems early, and to adapt to chal-
lenges as the project progresses. Stand up meetings are held daily. The scrum method splits pro-
jects into several 1-4 week work periods, called “Sprints”. See Figure 3.1. 

 

Figure 3.1: Scrum Work Flow (http://no.wikipedia.org/wiki/Scrum) 

As a base, a product backlog is created containing all the major tasks for finishing the product. In 
every sprint, each major task from the product backlog is stripped down into smaller tasks with a 
clear timeframe; this is the sprint planning. 

A scrum project has a product owner, stakeholders, scrum master and a development team. Before 
each sprint the product owner, scrum master and development team plans each task in a sprint 
planning. 

The product owner is responsible for prioritizing tasks from a business perspective, for the de-
velopment team. 

The scrum master is responsible for helping the development team to self-organize, and for pro-
tecting the development team against too many interferences. The scrum master is responsible for 
making stand ups and sprint reviews beneficial. 

The development team is responsible for generating value at the end of every sprint. It consists 
typically of 3 to 9 people and must hold the competence required to complete all project tasks. 

The stakeholders are the individuals that has ordered the product, and therefore has an interest in 
the product’s development. The stakeholder must convey to the development team the specific 
requirements for the product, both before and during the project period. 

At the end of a sprint the development team demonstrates the results from the sprint, and holds a 
sprint retrospect evaluation in order to improve future sprints.  

Scrum has been used as the project method for is this project with satisfying results. Figure 3.2 
shows a burndown for a selected sprint in the project period. 
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Figure 3.2: Burndown of Sprint 4 

A burndown shows workload completed and workload remaining. It represents a measurement for 
work effectiveness and the quality of the planning phase. 

Using scrum requires some adaption before being able to fully utilize its benefits. Meaning that 
the planning in the scrum method is challenging in means of determining workload for different 
tasks. However, once the planning process is incorporated well in the project group, it is easy to 
track the projects progress. 

More information on scrum can be found in [6]. 

3.2 Code Management 

Development of software in a team poses challenges regarding storage and sharing of source code. 
Changes in the code need to be tracked, and if several team-members work on the same code, one 
must be certain that no work disappears. 

There are several different tools that specialize in managing source code for exactly this purpose. 
This class of software is called “source control” or “version control”. The tool used in this project 
is Bitbucket, which is based on Git [7]. 

The code managed by Bitbucket is stored on cloud servers in a remote repository, and is accessed 
by the SourceTree desktop client. 

Bitbucket and SourceTree is able to merge two or more authors’ work on the same source code 
intelligently if the source is stored in plaintext. This is problematic for applications developed with 
LabVIEW, since the code is stored in a binary format. Thus a developer must make sure that he is 
the only person working on a given file between commits. 

A commit is a procedure performed at the end of a coding session, where the changes made in the 
code is stored in the repository. The chain of all commits in a repository shows who has done 
which changes, and is a useful tool in code management. 

After a commit, it is necessary to pull the code from the cloud server, in case something needs to 
be merged. Conflicts are discovered at this stage, and need to be resolved. The option is to use a 
merging tool, discard own changes and keep the file stored on the server, or overwrite the server 
file with the one stored locally. 
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Following a commit, a push is performed to upload the local repository to the cloud server, so 
other developers can work on the code. Figure 3.3 shows the process as a flowchart. 

Start

Commit

Pull Need to merge?

Yes

Merge

Conflict?

Yes

Resolve Push

No

NoMake Changes
End

 

Figure 3.3: Flowchart of a Commit Process 

3.3 Test Driven Development 

TDD is a process during code development where code is tested as it is created. TDD consists of 
tests known as unit tests. These tests are used to test small units in a code, e.g. a function in script 
based languages. These tests run a function with specific parameters, the function then returns the 
result based on the parameters and the test then checks if the value returned from the function 
matches the expected result. If the result does not match the test fails, otherwise it passes. 

When creating a new function, the developer first creates a test for the given function. The test is 
created before the function consists of any code, and the test is designed to test one simple func-
tionality of the function. After the test is created, the test is executed and it should fail, considering 
that the function does not consist of any code. The function is then refactored to pass the test, with 
no excessive code. The test is then executed and if the function was refactored correctly, the test 
should now pass. A new test is created which should fail, and the function is refactored in order to 
pass the new test. This process continues until the function is finished as seen Figure 3.4. This way 
of developing ensures that the function behaves the way the developer wants and does not consist 
of unnecessary code. If the tests are good, the code will also be relatively bug free, since the tests 
should detect these bugs. If the function at some point is altered, it is important to rerun the tests 
to ensure that the function still passes all the tests. For more information about TDD, read [8]. 
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Figure 3.4: TDD Flowchart 

  

JKI Labs VI tester is a tool for LabVIEW used for unit testing. The test window is shown in Figure 
3.5. All the tests are listed and executed from this window. Tests that pass are marked with a green 
check mark, tests that fail are marked with a red cross. 

 

Figure 3.5: JKI Labs VI Tester Screenshot 

Tests are created using a test case. This test case contains the necessary files needed in order to 
run the test VIs from the test window, as well as a VI template to create test VIs. A test VI looks 
like Figure 3.6. 
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Figure 3.6: Empty Test VI 

The block in the middle of the block diagram in Figure 3.6 tests if two values of any type is the 
same and the result is reported to the test window. This block can also be replaced with other 
blocks that tests if values are unequal or tests for errors, among others. Figure 3.7 displays a test 
for a sub VI called “Rescale”. This sub VI takes a value that used to be within a range and rescales 
that value to match a new range. In this test the value to be rescaled is 2, the original range is 0 – 
5 and the new range is 4 – 20. If the VI rescales the value correctly, the output value should be 
10.4. The output from the sub VI is connected to one of the inputs on the test block, while the 
expected value is connected to the other. If the sub VI works correctly, the test will pass when run 
from the test window. 

 

Figure 3.7: Test VI 

3.4 Automatic Documentation 

Good documentation of source code is important for troubleshooting and continuous development 
of software. Kelda uses a large amount of automatic documentation in their coding process, which 
saves time. LabVIEW makes it possible to use comments within the code, as well as write a de-
scription of each VI. There is a possibility to print out each VI with a picture of the front panel, 
connector terminal and block diagram, but it is shown to be faulty, not being consequent on which 
VIs that include the description in the printout. Other available tools for automatic documentation 
have been examined, but for customization purposes, a separate program has been developed to 
automatically document the GUI. 

The documentation program loops through each VI included and optionally outputs images of the 
front panel, block diagram and connector pane for them. The output format is HTML, and each 
element in every VI is given appropriate class IDs, so that it is possible to style flexibly using CSS. 

Any web browser can be used to open the HTML files and then print them to PDF. Attachment E 
contains the documentation of the documentation program. 



Telemark University College  4 Straume Hydraulic Simulator GUI 

IA6-1-15  18 

4 STRAUME HYDRAULIC SIMULATOR GUI 

Straume Hydraulic Simulator is based on a simulator model developed by Kelda (Straume Simu-
lator Core) and a GUI designed by Kelda Wellheads. It is made for on- and offshore drilling prac-
tice, and for testing controllers in different realistic scenarios such as connections or kicks. 

The GUI is divided into four main tabs: Simulation, Process, Interface and Configuration. See 
Figure 4.1. This chapter gives a brief introduction to these tabs, and is meant to present the final 
product. 

 

Figure 4.1: Tab Selector 

4.1 Simulation 

The Simulation tab displays all indicators as bars and allows for manually altering each control 
individually, as well as enabling or disabling the controller. Various graphs are displayed in this 
tab such as downhole pressure, trajectory and choke flow. See Figure 4.2. Compared to the Process 
tab, this tab gives a better visual overview of the process developments. 
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Figure 4.2: Simulation Tab 1 

 

Figure 4.3: Simulation Tab 2 

Additionally, the operator can choose which graphs to display by selecting different graph-tabs, 
shown on the top of each graph window. A different set of graphs are shown in Figure 4.3. 

4.2 Process 

The process tab lacks the pressure profile and gas fraction graphs in order to make room for a PFD. 
The PFD grants the operator a better understanding of the process. In addition, the PFD has the 
functionality of giving a detailed view of chosen components. 



Telemark University College  4 Straume Hydraulic Simulator GUI 

IA6-1-15  20 

 

Figure 4.4: Process Tab 

The PFD is a tool for visualizing the process and its functionalities such as: blowout preventer, kill 
line and change of drilling mud. 

 

Figure 4.5: BOP Detailed View 

In Figure 4.4 the BOP is highlighted in green to show that it is the current component displayed in 
the detailed view as illustrated in Figure 4.5. The PFD tab allows for manipulating the controls 
that are also shown in the simulation tab. The blowout preventer has in principle four ways of 
shutting off the drill string and/or annulus: 

1. Annular, which can be used to seal the annulus from the oilrig or to simply restrict flow 
from annulus. 

2. Blind ram is used to seal off the well when there is no drill string present in the well. 
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3. Blind shear ram is used as a final resort as the well is rendered unusable after the shear 
ram has been engaged. The blind shear ram cuts through the drill string and seals off the 
drill string and annulus. 

4. Pipe ram seals off the annulus by creating a seal on the outside of the drill string. 

 

Figure 4.6: Rig Pump Detailed View 

Figure 4.6 shows the rig pumps and valve setup, which is used to switch between rig pumps. 

 

Figure 4.7: Choke Detailed View 

Figure 4.7 shows the choke manifold, used to bypass sensors and switch between chokes. 
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4.3 Interface 

The Interface tab contains options for giving control of the process to different input sources. These 
options are controlling the process using joystick(s), running a scenario using a MAT-file and 
using a controller. 

 

Figure 4.8: Interface Tab 

In Figure 4.8 it is shown how the tab is set up with joystick settings on the left, MAT-file settings 
in the middle and controller settings on the right hand side.  

Beneath each joystick is a list of the controls it manipulates if activated. To activate a joystick the 
device number must match the index for the joystick listed under “Connected Inputs”. In Figure 
4.8 the device number is “6”, matching the joystick number in the array. The activated joystick is 
controlling BPP flow and Choke opening, as indicated by the bold black text. 

To run a scenario using a MAT-file, the user must select an input from the MAT-file and match it 
with the correct control. A scenario could be: running a connection, which is the period when a 
new standpipe is attached to the drill string; detecting and handling an emerging kick, using down-
linking [9]; displacing mud, which is changing the mud to achieve different properties; or working 
a stand, which is “washing” the well walls while maintaining DHP. 

The top drop-down menu, in the controller box, allows the operator to select different implemented 
controllers. In the current version (v1.3.0.0) there are two controllers implemented. One is a regu-
lar PI controller, and the other is a gain-scheduled PI controller. The “Feed Forward Method” 
menu in the controller box is used in order to deactivate or activate feed forward control. 

4.4 Configuration 

The configuration tab allows the operator to browse for and load well configurations stored on a 
computer. 
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Figure 4.9: Trajectory Settings 

Figure 4.9 shows a loaded trajectory settings file that is plotted in the graph to the right. The file 
can be altered after it is loaded into the GUI, and the changes are automatically updated in the plot. 
The trajectory plot shows the trajectory of the well in two dimensions and gives an understanding 
of its depth and horizontal deviation. 

 

Figure 4.10: Drill String Settings 

Next to the trajectory settings are the drill string settings. See Figure 4.10. These define the widths 
and lengths of the components in the drill string. The left plot in Figure 4.10 shows the drill string 
and the annulus. The plot on the right shows the drill string below the first component that is less 
than 200 meters long, i.e. it is a more detailed view of the bottom part of the drill string (BHA). 

The wellbore settings define the annulus. In Figure 4.11 the annulus settings are plotted. 
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Figure 4.11: Wellbore Settings 

The “Apply Configuration”-button is located in the top-right corner of the Configuration tab and 
can only be pressed when all settings have already been imported and uploaded to the simulator. 

When the “Apply Configuration”-button is pressed, all of the well-settings are compared to assure 
that the well data is compatible. 

4.5 Status Bar 

At the bottom of the GUI is a status bar which displays system information and simulation control 
buttons. See Figure 4.12. 

 

Figure 4.12: Status bar 

The status bar shows, from left to right: 

 Configuration Status – Shows whether configuration upload was successful or not 
 MAT-file Icon – Shows if pre-recorded inputs are running 
 Controller Icon – Shows if the choke opening is overridden by a controller 
 Joystick 1 Icon – Shows if a joystick controls rig pump, block height and TD speed 
 Joystick 2 Icon – Shows if a joystick controls BPP and choke opening 

To the right are “Initialize”, “Run”, “Pause” and “Stop” buttons, the possibility to adjust the sim-
ulation speed and a simulation time indicator. 
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5 SOLUTIONS 

Constructing an intuitive and clean GUI offers various challenges regarding design and features. 
A general guideline is to have a minimalistic design and keep colors neutral. 

As offshore drilling has been around for a relatively long time, an important task is to use common 
names on controllers and indicators, as well as graph values and tabs. This reduces the amount of 
time a drilling operator must use to adapt to the simulator. 

To achieve the results seen in Chapter 4, many different solutions have been developed. The solu-
tions described in this chapter are in regards to visualization, input acquisition and coding. The 
documentation for the subpanels and sub VIs can be found in Attachment F and Attachment G, 
respectively. 

5.1 Font Size 

For calculating optimal font size in the GUI, Equation (2.1) is used. 

 
� =

� ∙ �

3438
=

20	[���] ∙ 50	[��]

3438	[���]
= 0.29	[��] ≈ 0.3	[��] (5.1) 

The result shown in Equation (5.1) shows that font height will be approximately 0.3 cm if the 
operator is sitting 50 cm away from the screen. From these results, the indicator font size is chosen 
to be minimum 15 pixels, which represents approximately 0.3 cm on a typical HD screen. 

5.2 Control and Indicator Design 

Controls and indicators are designed with the intension of creating a clean GUI. The controls and 
indicators are sorted into groups in order to give the operator a good overview of the process, and 
to make interactions more intuitive. The group classification is based on the placement of the 
equipment in the process. 

 

Figure 5.1: Indicators 

In Figure 5.1 two indicators that were designed is shown. The indicator on the right has two dy-
namic limits in the top and bottom. The indicator with the dynamic limits is discarded as the limits 
proved to be excessive, as the simulator core does not support them. The indicator on the left hand 
side is used instead. 
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Figure 5.2: Controls 

Figure 5.2 shows the design of the controls being used in the GUI. The Kelda logo is implemented 
in the slider of the controls and in the Boolean switch. The controls are custom designed for 
Straume Hydraulic Simulator GUI. 

The Flow Diff indicator was developed as a way to see the flow into the drill string versus the flow 
exiting the annulus, shown in Figure 5.3. 
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Figure 5.3: Flow Diff Indicator 

The Flow Diff indicator allows for displaying how a kick influences a drilling process. Figure 5.3 
displays a kick emerging from the annulus. As a kick emerges from the annulus, an increase in 
flow from annulus will appear, and is displayed on the indicator. Thus leading to a greater outflow 
than inflow from the annulus, which is a clear sign of a kick. 

5.3 Mud Visualization 

While drilling it is common to change mud in order to alter different properties such as density, 
viscosity and the ability to transport drill cuttings. An intensity graph is used in order to visualize 
this scenario. 

By using this graph in combination with a PFD of the rig assembly, it is possible to visualize mud 
replacements as shown in Figure 5.4. 
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Figure 5.4: Mud Flow Visualization 

The PFD is placed on top of the graph and displays the rig assembly layout while the intensity 
graph displays which muds are currently in the drill string and annulus. When a new mud is in-
jected into the drill string, the intensity graph visualizes the event as shown in the picture above. 
The mud enters the drill string at the very top and moves downward to the bottom where it exits 
the drill string and enters the annulus. The mud then moves up along the annulus until it reaches 
the top. 

 

Figure 5.5: Kill line visualization 

Mud can also be injected into the annulus using the kill line as seen in Figure 5.5 and this mud is 
known as kill mud. This mud moves down the annulus for as long the kill line is open, when the 
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kill line closes, the kill mud moves back up the annulus with the regular mud. The simulator core 
does not support mud injection at the time of writing this report; however, it is planned in future 
releases. 

The intensity graph makes it possible to display a wide variety of colors across an XY-plane. The 
graph takes a two-dimensional array as input and maps the values of this array. The graph’s X-
axis is defined by the number of columns of the array and is known as the X value, while the Y-
axis is defined by the number rows of the array and is known as the Y value. The element pointed 
to by the X and Y value is known as the Z value, and the value of this element corresponds to a 
color in the intensity graph. 

 

Figure 5.6: Mud visualization with intensity graph 

The mud visualization is solved by inserting a Z value (a mud color) into the array, with X-values 
matching the width of the drill string, and a Y value placed at the very top of the drill string as 
illustrated in Figure 5.6. 

 

Figure 5.7: Mud flow displacement 

For each iteration of the VI, the Y value will decrease by 1. Figure 5.7 displays how the graph is 
updated every iteration (the size of the Y value is bigger in this figure than in the GUI in order to 
make it visible). As the figure shows, the Y value is not increasing in size during the iterations, 
but its position changes. 

The graph’s functionality is so that it only updates new values, and the graph will keep its old 
values until they are overwritten. Because of this, the graph will actually look like Figure 5.8 until 
a new mud is inserted into the graph. This makes it look like the mud is moving down along the 
drill string, and makes it possible to easily have several muds moving down the drill string at the 
same time. 
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Figure 5.8: Mud flow visualization 

When the mud reaches the bottom of the drill string, the X value is rescaled to match the annulus, 
and the Y value starts increasing rather than decreasing by 1 for each iteration. This makes it look 
like the mud is moving up the annulus. When the annulus increases in width, the Y no longer 
increases every iteration, but rather every second or third (depending on annulus width). This 
makes it look like the mud is moving slower. 

Documentation for this solution is found in Attachment F: PFD (SubPanel).vi. 

5.4 Joystick 

The GUI has the option to be controlled using two joysticks. One for controlling BPP and Choke, 
and one for handling Mud Pump, TD Speed and Block Height. On each joystick, the handle for 
controlling Choke Opening and Mud Pump Flow stays in position and does not return to a zero-
position when released. See Figure 5.9. 

 

Figure 5.9: Joystick with Handle 

As seen in Figure 5.10, when the handle pictured in Figure 5.9 is stationary, noise disturbs the 
signal, and makes it difficult to use for controlling the simulator. 
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Figure 5.10: Noisy Joystick Signal 

To counter this, a deadband filter was made, which requires a certain magnitude of change before 
outputting a different result. This is illustrated in Figure 5.11. 

 

Figure 5.11: Deadband Filter Illustration 

Equation (5.2) shows how the filter is implemented. 

 

�(�) =

⎩
⎪
⎨

⎪
⎧ �(� − 1) |�(�) − �(� − 1)| ≤

��������

2
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|�(�) − �(� − 1)| >

��������

2
	���	�(�) > �(� − 1)
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|�(�) − �(� − 1)| >
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2
	���	�(�) ≤ �(� − 1)

 (5.2) 

After the implementation, the joystick axis values look smoother, seen in Figure 5.12. 



Telemark University College  5 Solutions 

IA6-1-15  32 

 

Figure 5.12: Filtered Joystick Signal 

Documentation for these solutions is found in Attachment F: Joystick Interface (SubPanel).vi, At-
tachment G: Joystick Rate of Change (SubVI).vi and Backlash (SubVI).vi. 

5.5 MAT-Files 

The GUI also has the option to be controlled by pre-recorded inputs by using MAT-files with a 
single structure. A structure is a collection of different kinds of data, known as fields, referred to 
by name. Every field in the structure must be a one-dimensional array of doubles with a 1 Hz 
sampling. It is necessary to synchronize the channel sampling with the input acquisition. To know 
which element to pick, Equation (5.3) is used. 

 
� = �

�

1000
� (5.3) 

Where � is the element, and � is the simulation time in milliseconds. 

Since inputs are gathered at a rate of 20 Hz, interpolation is used. This can be seen in Equation 
(5.4). 

 
�� = �� +

�	(���	1000)

1000
	(���� − ��) (5.4) 

Where � is the array containing the signal samples. 

Documentation for these solutions is found in Attachment F: mat file Interface (SubPanel).vi, At-
tachment G: Array to Element with Interpolation (SubVI).vi and matToArray (SubVI).vi. 

5.6 Subpanels 

Because of the large amount of functionality implemented in the GUI, in addition to the flexibility 
needed in team development, creating one VI for the whole GUI would prove difficult. A solution 
to these problems is to use subpanels, which makes it possible to run VIs within other VIs. The 
GUI is split into several VIs in a hierarchy as shown in Figure 5.13. 
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Figure 5.13: Subpanel Hierarchy 

In this hierarchy, a VI loads the VIs indicated by arrows, e.g. Simulation loads Graph, Control and 
Indicator. VIs surrounded by a striped rectangle indicates that they are in the same tab group, 
meaning that they are never displayed at the same time, but rather replacing each other in the same 
subpanel when a certain action is done in the GUI such as a tab change. 

When the Process window is active, it is responsible for displaying PFD, Pressure and Flow, and 
Trajectory. However since Pressure and Flow and Trajectory are in the same tab group, Process 
will either display a combination of PFD and Flow and Pressure, or a combination of PFD and 
Trajectory, depending on the tab selection. 

Documentation for this solution is found in Attachment G: VI Handle (SubVI).vi. 

5.7 Tabs 

Tabs are used in order to sort information and maintain ease-of-use. However, for greater synergy 
with subpanels and the ability to customize appearance, the tabs are created from regular buttons 
and directly connected to a subpanel. These tab buttons remove and load different VIs into a sub-
panel, replicating the functionality of regular tabs. 

An example of this solution can be found in Attachment F: Graph VI (SubPanel).vi. 

5.8 Shared Variables 

To make the use of multiple subpanels possible, it is necessary to implement shared variables. 
Shared variables have the option to either be shared on the Ethernet network, or being shared with 
the VIs in the current project. 

The variables are implemented so that there is a variable for each of the simulator core’s inputs 
and outputs. The main VI, which controls the subpanels, is responsible for reading and writing to 
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them. At the start of each application loop, the main VI inputs the values from the variables into 
the simulator core. After iterating the simulator core the desired amount of steps (see chapter 5.12 
for details), it then reads the new simulator core outputs into the shared variables. 

In addition to the simulator core inputs and outputs, numerous other shared variables are being 
used to control the application. In every scenario where information needs to be shared between 
subpanels, shared variables are used. An example is information about if joystick 1 is active. If 
that is the case, the controls for top drive speed, block height and mud pump flow should be grayed 
out, and an indication should show in the status bar. Since these controls exist only in the Control 
VI subpanel, and the information about whether joystick 1 is active or not exists only in the Joy-
stick Interface subpanel, and the status bar is its own subpanel, shared variables are used. See 
Figure 5.14 for a visual explanation. 

Subpanel 1 Subpanel 2

Shared Variable

Subpanel 3

 

Figure 5.14: Shared Variables 1 

Documentation for this solution can be found in Attachment F: Simulation (Main).vi. 

5.9 Control Priority 

As shown in Chapter 4, both the Simulation and Process tabs control most of the simulator core 
inputs. Certain inputs may be controlled by joysticks, choke opening may be controlled by a con-
troller, and all inputs may be controlled by MAT-file recorded inputs. To avoid confusion about 
which subpanel has control priority, the simulator works with the following priority list: 

1. MAT-file 
2. Controller 
3. Joystick 
4. Process window 
5. Simulation window 

The Simulation and Process windows have the same priority in reality, since only the window that 
is active has actual control priority. That means that when the Simulation window is active, the 
Process window reads the shared variable connected to it, instead of writing to it, so that when a 
transition to the Process window occurs, there is no jump in control value. See Figure 5.14 and 
Figure 5.15. 
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Subpanel 1 Subpanel 2

Shared Variable

Subpanel 3

 

Figure 5.15: Shared Variables 2 

The control priority is handled by one shared Boolean variable per subpanel per simulation vari-
able. E.g. Choke Position has these auxiliary Boolean variables: 

 Mat Override Choke Opening 

 Choke Controller Active 

 Joystick Override Choke Opening 

 PFD Override Controls (common for all controls) 

Since the Simulation window has the lowest priority, Figure 5.16 shows the check it does for de-
ciding whether to read from or write to the Choke Position global variable. 

OR

Mat Override Choke Opening

Choke Controller Active

Joystick Override Choke Opening

PFD Override Controls

Case of: Action:

TRUE Read value from shared variable

FALSE Write value to shared variable
 

Figure 5.16: Logical Check for Choke Position in Simulation Window 

Examples for this solution can be found in Attachment F: Control VI (SubPanel).vi. 

5.10 States 

The GUI has different states, allowing different functionality for each state. These states are ini-
tialize, run, pause and stop, with stop being the state at GUI start-up.  

The states are stored in a shared variable that is defined as an enumerated type. This type associates 
integers with the strings that define the states. All VIs have access to this shared variable, allowing 
them to know the state of the program.  

The initialize state resets the simulator core, meaning that every value in the simulator is reset to 
its initial value. 

The run state steps the simulator core and keeps it running while the state is active. 

The pause state pauses the simulation, but keeps all the values in the simulator. If the GUI changes 
state from pause to run, it will continue from where it left off. 

The stop state pauses the simulation, just as the pause state, however, if the GUI changes state to 
run, the GUI will run the initialization state first, resetting the simulator core in the process. The 
GUI will not keep any values and the simulation will start over. 

These states are accessible from the main window in the GUI, shown in Figure 5.17. 
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Figure 5.17: Control Buttons 

The button for each state, from left to right, is initialize, run, pause and stop, with an indicator at 
the end that displays the current state. 

Documentation for this solution is found in Attachment F: Simulation (Main).vi. 

5.11 Simulator Core Interface 

The oil-drilling model (core) Kelda has developed is written in MATLAB-code. Since the GUI is 
developed with LabVIEW, the core is compiled and imported to the LabVIEW environment. The 
documentation for the simulation core API is found in Attachment D, and shows the available 
functions and methods. 

The simulation core is compiled into a DLL-file, which is imported using the “Import Shared 
Library” function in LabVIEW. This function creates VIs for every function described in the 
DLL’s complemented header-file. These VIs are used to access the model in the LabVIEW envi-
ronment. The VIs have the form shown in Figure 5.18. 

 

Figure 5.18: Model Function VI 

Documentation for this solution can be found in Attachment F: Simulation (Main).vi. 

5.12 Simulation Speed 

The GUI has the possibility to speed up the simulation by adjusting a multiplier. What happens in 
the GUI is illustrated in Figure 5.19. The multiplier is what determines how much the simulator 
speeds up. With a multiplier of 1 the simulator runs in real time speed, with a multiplier of 10, the 
simulator runs 10 times faster. If the simulator runs with normal speed (multiplier is 1), the simu-
lator will step 5 times per GUI iteration. If the multiplier is 10, the simulator will step 50 times 
instead. 

Sim Speed indicates the actual speed of the simulator. If the multiplier is set to 100, but the com-
puter running the simulator does not manage to run it faster than 50 times normal speed, the Sim 
Speed indicator will display 50.  

The Sim Time is the estimated simulation time of the simulator. If the GUI has been running for 
2 minutes in real time, but the multiplier has been 2 for these 2 minutes, the Sim Time will be 
4 minutes. 
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Figure 5.19: Principle Function of Simulation Stepping 

The layout of these values is displayed in Figure 5.20. From left to right is Multiplier, Sim Speed 
and Sim Time. 

 

Figure 5.20: Simulation Speed Functions 

Documentation for this solution can be found in Attachment G: Time (SubVI).vi. 

5.13 Controller Implementation 

With regard to a repeatable and precise control system, the controller has been implemented within 
the simulation loop, as shown in Figure 5.21. 

Write to 
simulator

Read from 
simulator

Multiplier

Sim Speed Sim Time

Step Simulator 
(10 ms)

5

ControllerFeedback

Control Signal

Figure 5.21: Controller Implementation 

For each GUI iteration, which happens every 50 ms, the above routine runs the amount of times 
given by the Multiplier variable. For each iteration of the inner loop, the simulator core is stepped 
5 times, and the controller is run once. Each simulation step iterates the simulation time 10 ms, 
which means that the controller is run every 50 ms in simulation time. This is less than 0.5% of 
the dominant time constant, which ranges from 11 to 50 s (see Chapter 0). The sampling time 
should be less than 10% of the dominant time constant, which it is [10]. 

Documentation for this solution is found in Attachment G: SimControl (SubVI).vi. 



Telemark University College  5 Solutions 

IA6-1-15  38 

5.14 Configuration 

It is possible to configure the simulated well, and the limits that are used for the controls and 
indicators in the GUI. 

The well configuration is split into three different parts: trajectory, drill string and wellbore. Each 
of these uses a CSV-file for its configuration. Using CSV-files for these configurations makes it 
possible for the user to use programs such as Microsoft Excel when configuring a well. 

The CSV-file is loaded into the VI by using browse dialog block to find a file on disk and a read 
from spreadsheet block in order to convert the data into a two-dimensional array. Values are then 
extracted from the array, uploaded into the simulator GUI and plotted in a graph in order to visu-
alize the implemented settings. 

Documentation for the configuration tab is found in Attachment F: Configuration Window 
(SubPanel).vi. 

5.14.1 Trajectory 

The Trajectory settings define the trajectory the wellbore and drill string follow. They are defined 
top-down and by position. An excerpt of the data found in a Trajectory settings file is shown in 
Table 5.1. 

Table 5.1: Excerpt of Trajectory Settings Data 

 MD (ft) Inc (ø) Azi (ø) TVD (ft) 

 (ft)   (ft) 

0 0 0 0 0 

1 478.09 0.22 325.84 478.09 

2 511.72 0.31 6.18 511.72 

Here MD and TVD are of importance. Figure 5.22 shows one length element of the trajectory data. 

MD

TVD

HD  

Figure 5.22: Trajectory Settings Data Element 
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Figure 5.23: Trajectory Plot 

HD is needed in order to create the trajectory plot shown in Figure 5.23. Equation (5.5) shows how 
the values are related. 

 ��� = ��� − ���� (5.5) 

Each TVD and HD position is paired up and plotted as a point on the XY-graph of Figure 4.9. 
Each TVD and MD position is passed to the simulator core API when uploaded. 

Documentation for the Trajectory settings tab is found in Attachment F: Trajectory Config 
(SubPanel).vi. 
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5.14.2 Drill String 

The Drill String settings define the diameters and length sections of a drill string, and are defined 
bottom-up and by length elements. An excerpt of the data found in a drill string settings file is 
shown in Table 5.2. 

Table 5.2: Excerpt of Drill String Settings Data 

Component 
Section 
Length I.D. O.D. 

 (ft) (in) (in) 

Bit 1.5 2.5 7.625 

Rotary Steera-
ble 29.3 2.5 7.625 

MWD Tool 37 2.25 8.25 

I.D. and O.D. are abbreviations for inner diameter and outer diameter, respectively. The raw sec-
tion lengths and diameters are passed to the simulator core API. To create the plot, the length 
elements are cumulatively summed and prefixed with a 0-element, so that they become a positional 
array. The diameter elements are divided by 2 to become radius. Points are then created in an XY-
plot and drawn lines between to create an image similar to the one seen in Figure 5.24. One of 
these is created for both the inner and outer diameters, to achieve the plot seen in Figure 4.10. 
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Figure 5.24: Drill String and Wellbore Plot 

Documentation for the Drill String settings tab is found in Attachment F: Drillstring Config 
(SubPanel).vi. 

5.14.3 Wellbore 

The Wellbore settings define the well annulus by its lengths and diameters, and are defined top-
down. An excerpt of a Trajectory settings file is shown in Table 5.3. The raw lengths and diameters 
are passed to the simulator core API, and the plot seen in Figure 4.11 is created the same way as 
the Trajectory plot, explained in Chapter 5.14.1. 

Table 5.3: Excerpt of Wellbore Settings Data 

Inner Diameter Length 

(in) (ft) 

10.75 9000 

10 4830 

9.5 2750 
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Documentation for the Trajectory settings tab is found in Attachment F: Wellbore Config 
(SubPanel).vi. 

5.14.4 Limits 

As some values are displayed multiple places in the GUI, several controls and indicators use the 
same inputs or outputs in the simulator core. To ensure that the limits always are the same for these 
controls and indicators, they all get their limit settings from the limits configuration. These con-
figurations ensure that the limits always are the same for the same simulator core input or output. 
The inputs and outputs affected by these limits are the controls and indicators in the simulation 
and process window, the joysticks and the graphs. 

Documentation for the Trajectory settings tab is found in Attachment F: GUI Limits Config 
(SubPanel).vi. 

5.15 Trend 

The GUI relies on time stamped plotting to display the history of different values. A chart would 
normally be sufficient for this task; however, a chart relies on synchronized threading, meaning 
that the chart must be in the same loop as the data it is plotting in order to keep track of the time 
stamps. In addition, the chart does not support different time intervals between plot data, this be-
comes a problem when the GUI changes simulation speeds. 

To work around this problem, a combination of a circular buffer and a graph is used. The circular 
buffer’s functionality is to store values in a buffer with a certain size. When a value is inserted into 
the buffer, the value is stored at the first empty space in the buffer as illustrated in Figure 5.25. 

 

Figure 5.25: Insert Value into Buffer 

If the buffer is full, new values are stored from the start of the buffer, overwriting old values in the 
process as illustrated in Figure 5.26. 

 

Figure 5.26: Overwrite Value in Buffer 
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In the GUI, the circular buffer stores the sim time (Tn) with values for that given time in an array, 
in the same buffer slot as illustrated in Figure 5.27. 

 

Figure 5.27: Array in Buffer 

The values are read from the buffer and written into a graph with the sim times as the x-axis and 
the values along the y-axis. For every iteration, the graph is updated to match whatever is in the 
buffer.  

Since the values are linked to specific sim time, the sample time of the graph’s loop is irrelevant 
for the time stamps in the graph. This makes it possible for the graph to have unsynchronized 
threading (can be in a different loop than the buffer). This also makes it possible to have different 
time intervals between plot data. 

Documentation of the Circular Buffer is found in Attachment G: Circular Buffer.vi. 
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6 CONTROLLER 

Controlling DHP is one of the main challenges of oil drilling. Doing this autonomously provides 
the benefit of being able to drill in challenging environments, where the difference between frac-
ture pressure and collapse pressure is small and conventional drilling falls short. Thus, having a 
well-designed controller is important in MPD, as it is crucial to ensure safe and economic drilling. 

Kelda Drilling Controls is developing a robust model-based controller for pressure management, 
which is going to be compared to the PI controller designed in this project. It uses a DHP-estimator 
which estimates DHP using choke pressure, hydrostatic pressure and friction given by flow and 
drill string rotation [11]. This means that the DHP may be controlled by controlling choke pressure, 
which is an easier task than controlling DHP directly, due to the negligible time-delay from 
changes in choke position to measured choke pressure. 

The goal of tuning this PI controller is to make it able to keep the choke pressure at a desired 
reference (set point), handle disturbances in flow and handle changes in set point. 10 – 12 bars is 
chosen as the operating range of the choke pressure set point, which is a common scenario. The 
choke pressure is controlled by changing the choke opening1. A smaller opening builds up pressure 
behind it. Maximum accepted deviation from set point ranges from 2.5 to 5 bars. 

6.1 Pressure Model 

The model for choke pressure is seen in Equation (6.1) [12]. 

 

�̇�(�) =

�	 ����(�) − ��	�
2	(��(�) − ��)

� 	�����(�)��

�
 

(6.1) 

For the specific well that is being used to benchmark the controller, the values are seen in Table 
6.1. 

                                                 

1 The choke opening will in reality have a maximum speed of movement. This dynamic is not implemented in the 
simulator core at the time of writing this report, thus the results seen in this chapter will not be realistic. Consequences 
of having an instantly-moving choke may be that the system’s gain margin becomes unrealistically high. 
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Table 6.1: Symbol List with Values 

Symbol Description Value 

�� Choke Pressure ��(�) Pa 

� Mud Bulk Modulus 1 ∙ 109 Pa 

��� Mud Flow into Choke ���(�) m3 s-1 

�� Choke Valve Area 6.12 ∙ 10-5 m2 

�� Atmospheric Pressure 105 Pa 

� Mud Density 1500 kg m-3 

�� Choke Opening 0 – 1 (See Table 6.2) - 

�� Choke Signal 0 – 1 (See Table 6.2) - 

� Mud Volume 250 m3 

Table 6.2 shows the choke characteristics – the relationship between the choke signal (��) and the 
choke opening (��). 

Table 6.2: Choke Characteristics 

�� ��(��) 

0.000 1.634 ∙ 10-6 

0.2000 1.634 ∙ 10-6 

0.3740 0.1159 

0.4290 0.2403 

1.000 1.000 

6.2 Skogestad’s Method 

A model based tuning method is chosen to tune the PI controller, more specifically Skogestad’s 
Method. It was chosen because of the option to change the desired speed of the system, making it 
possible to tune into not overshooting2 in the case of a step in reference. This is important for 
avoiding fracturing or collapsing a drilling well. It is based on the feedback system shown in Figure 
6.1, and the controller described in Equation (6.2). 

                                                 
2 Overshooting is when the process value runs past the set point after a step in set point.  
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Figure 6.1: Simplified Controller and Process Model 

 

 
� =

�

�
= �� 	�1 +	

1

��	�
� (6.2) 

Here � is the controller and � is a linear process model, in this case the choke to choke pressure 
model. As seen in Equation (6.1), the pressure model is not linear, and a step response method of 
reducing the model is used to approximate linearity. 

Skogestad’s Method is shown in the following equations [13]: 

 
�� =

1

�

�

�� + �
 (6.3) 

 �� = �����, 4	(�� + �)� (6.4) 

 
� =

∆�

∆u
 (6.5) 

Where 

 �� is the controller’s proportional gain 

 �� is the controller’s integral time 

 � is the process gain 

 � is the process time constant 

 � is the delay 

 �� is the desired system time constant 

 ∆� is the difference in process value, in this case pressure 

 ∆u is the difference in signal, in this case choke signal3 

6.3 Step Response 

To obtain � and �, it is necessary to perform a step in the choke signal. 

                                                 
3 Since the choke characteristic is nonlinear, the inverse of the choke signal will be used, effectively turning the choke 
signal into choke opening, such that the signal that is controlled is �� rather than ��. 
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Table 6.3: System Values for Step Response 

Symbol Description Value 

��� Mud Pump Flow 2000 L min-1 

���� Back Pressure Pump Flow 0 L min-1 

�� Choke Signal Start 55 % 

�� Choke Signal End 45 % 

 

 

Figure 6.2: Signal Step Response – u1 to u2 

Table 6.4: Measured Values from Step Response 

∆� -10 % 

∆� 4 bar 

� 11 s 

� -0.4 bar %-1 

Figure 6.2 shows how the choke pressure responds to the step with the values found in Table 6.3. 
Table 6.4 shows the measured response values. 

Since the process gain (�) is negative, the controller must have direct action. This means that the 
controller gain (��) must be negative. In the GUI implementation however, �� is always positive, 
because the value is negated within the program code. 
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6.4 Controller Response 

The controller response is tested with the values in Table 6.5. Three different values of �� are 
explored. The response is tested on changes in reference and different changes in flow (disturb-
ances). The results are found in Attachment H: PI Controller without Feed Forward. 

Table 6.5: Controller Response Test Values 

�� 10 bar 

�� 12 bar 

���� 2000 L min-1 

���� 1000 L min-1 

���� 2500 L min-1 

���� 4000 L min-1 

A relatively low �� is chosen in the first case. See Table 6.6 for PI parameters. The results show 
that after the set point change, the pressure overshoots by about 2 bars before quickly falling in 
line with the set point. All disturbances are quickly compensated for, and the deviations from set 
point are less than 1 bar. 

Table 6.6: Low τc PI Parameters 

��   2 s 

��  -13.8 % bar-1 

��  8 s 

Table 6.7 contains the PI parameters which is used in the case of medium ��. The results show that 
the system responds quickly to changes in set point, without overshooting. Disturbances are slowly 
compensated for, with the pressure deviating little more than 1 bar from the set point. 

Table 6.7: Medium τc PI Parameters 

��  5 s 

��  -5.5 % bar-1 

��  11 s 

Table 6.8 contains the PI parameters used in the case of a high ��. After a change in set point, the 
pressure slowly approaches the reference with no overshoot. Disturbances cause the pressure to 
deviate by more than 2 bars before slowly approaching the set point. 
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Table 6.8: High τc PI Parameters 

��  15 s 

��  -1.8 % bar-1 

��  11 s 

6.5 Feed Forward 

Since the case of low �� in some cases causes overshoots, and the case of high �� gives large 
deviations after flow disturbance, medium �� is chosen for selection of PI parameters. To reduce 
deviations caused by disturbances and to keep the pressure at the set point in case of a power loss4, 
feed forward control is used. 

The model for the choke pressure is given by Equation (6.1). This is used to obtain the feed forward 
signal, by the method found in [14]. The feed forward signal is found in Equation (6.6). 

 
��,��(�) =

√2

2
	

���(�)

��	�
��,��(�) − ��

�

 
(6.6) 

 

��� is the sum of the back pressure pump flow (����) and the mud pump flow (���). ����’s effect 

on the pressure comes instantaneously, but ��� takes a while to reach the choke. Thus, it is rea-

sonable to delay the effect of that flow with that time (�). The time-delay is found in Equation 
(6.7). 

 
� =

2	����������������ℎ

����������
 (6.7) 

 

It has also been found that the flow through the choke caused by ��� is approximately a first-order 

process, where the time constant, ���, has been found by experiment to be around 20 s in the 
desired range of operation. Thus, the mud pump flow used for calculating the feed forward contri-
bution is described by Equation (6.8). 

 ���,��

���
=

���	�

���	� + 1
 (6.8) 

This gives (6.9) for the feed forward contribution. 

                                                 
4 A power loss causes the mud pump flow to drop quickly to 0. 
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��,��(�) − ��

�

 
(6.9) 

6.5.1 Tests 

The controller with feed forward will be tested by using the medium �� parameters, and the same 
scenarios found in Chapter 6.4. In addition a test emulating a power loss will be used, seen in Table 
6.9. The results are found in Attachment H: PI Controller with Feed Forward. 

Table 6.9: Power Loss Flow Value 

���� 0 L min-1 

The results show that after the change in set point, the pressure overshoots by 1 bar before quickly 
returning to the reference. The disturbances show that the pressure deviates by less than 1 bar 
before quickly returning to the set point. After the power loss, the pressure deviates by up to 
1.5 bars before stabilizing at 1 bar below the set point. 

6.6 Gain Scheduling 

Since the choke pressure is a nonlinear process, a controller may only perform well around the 
parameters that were used to tune it. Figure 6.3 shows the PI controller tuned to the medium set-
tings, but at a set point step from 40 to 45 bars, which may also be a common scenario. It is clearly 
visible that the system is initially unstable, which is undesirable. 

 

Figure 6.3: From 40 to 45 bars 

A solution for this is to use gain scheduling with the choke pressure set point as the controlling 
parameter [15]. This can be done by tuning the controller at several different parameter settings, 
and use interpolated values. It is also possible to calculate the PI parameters continuously by com-
bining the pressure model from Equation (6.1) and Skogestad’s method. Here the former will be 
investigated. 
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The PI parameters are found by the same method as in Chapter 6.4, but by adjusting the choke 
opening so that we get four operating ranges from about 10 to 50 bars. The medium �� setting will 
be used (5 s). The mud pump flow will remain at 2000 L min-1. Table 6.10 shows the values found. 

Table 6.10: Gain Scheduling PI Parameters 

��,�� 

[bar] 

�� 

[%] 

�� 

[%] 

� 

[s] 

� 

[bar %-1] 

�� 

[% bar-1] 

�� 

[s] 

11 50 45 11 -0.25 -8.8 11 

22 35 30 27 -1.4 -3.9 20 

37 28 25 36 -2.6 -2.8 20 

48 24 22 50 -3.9 -2.6 20 

6.7 Results 

The complete controller including gain scheduling and feed forward control will be tested as 
shown in Table 6.11 and Table 6.12. The results are found in Attachment H: Gain Scheduled PI 
Controller with Feed Forward. 

Table 6.11: Tests 

Test Set Point Mud Pump Flow 

1 �� to �� ���� 

2 �� ���� to ���� 

3 �� ���� to ���� 

4 �� ���� to ���� 

5 �� ���� to ���� 

6 �� to �� ���� 

7 �� ���� to ���� 

8 �� ���� to ���� 

9 �� ���� to ���� 

10 �� ���� to ���� 
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Table 6.12: Test Values 

�� 10 bar 

�� 12 bar 

�� 40 bar 

�� 45 bar 

���� 2000 L min-1 

���� 1000 L min-1 

���� 2500 L min-1 

���� 4000 L min-1 

���� 0 L min-1 

The results show that at the lower bound set points, the measurements are nearly identical to those 
of Chapter 6.5. The tests at the higher bound set points shows that the system is stable, and pro-
duces results that are within the accepted limits for all disturbances, including the power loss sce-
nario, where the pressure stabilizes at 3 bars below the set point. The gain scheduled PI controller 
with the parameters from Table 6.10, together with the feed forward function from Equation (6.9) 
gives a controller which performs within the acceptable limits. 
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7 DISCUSSION 

7.1 GUI 

Having developed “Straume Hydraulic Simulator” in LabVIEW has enabled rapid development 
of the application. It requires that the user has LabVIEW Run-Time Engine installed and this de-
pendency suggests that the application is not lightweight. It was created with a strong focus on 
flexibility of customization, and having multiple programmers working on the GUI simultane-
ously. In addition, large amounts of elements used in the GUI were custom designed. This made 
the GUI appear less like a LabVIEW-produced software, as was desired by Kelda. 

The GUI was designed to be easy to understand. This was managed by using common rig termi-
nology and plots, as well as a minimalistic design where the user only receives relevant infor-
mation. 

Key values are logged in the different graphs, and the graphs have an adjustable time-axis in order 
to display the wanted history. This tool allows for demonstration of drilling behavior. In addition, 
the GUI has the ability to run pre-recorded inputs, known as scenarios, by reading MAT-files. 

The PFD described in Chapter 4.2 gives the user a visual interaction with the drilling process, and 
gives an overview of the process in its entirety. 

7.2 Controller 

The choke dynamics of the system are neglected in the simulation model, thus the simulated results 
found in Chapter 6 are better than in a real-world scenario, and must be critically reviewed. The 
consequences are that the choke pressure dynamics becomes a first order process, rather than a 
higher order process (which would be closer to the real-world dynamics).  This means that the 
phase difference will not exceed 90°, thus the system will have an infinite gain margin [16]. 

The results are conditional upon the ability to map the characteristics of the choke valve. This is 
possible using the knowledge of how flow, pressure and the choke opening relates, by testing it 
live at different input signals. An approximation method may be used to fit a function to the valve 
characteristics, e.g. B-spline approximation [17]. 

The results from Chapter 6 show that a conventional PI controller alone gives a process that either 
reacts slowly to disturbances or is unstable in operating ranges outside the one used to tune the 
controller. Adding feed forward control protects against disturbances, and using a gain scheduled 
PI controller gives stability in a larger operating range. 

7.3 Workflow 

Using Scrum, TDD, version control and automatic documentation has been central to the devel-
opment of the GUI. It has ensured productivity, traceability and structure throughout the develop-
ment process. Having regular sprint meetings (stand-ups, planning, reviews) has enabled Kelda 
and the project group to work closely together. It has provided Kelda with the opportunity for 
frequent input regarding the GUI features, and the project group with the opportunity for assistance 
when needed. 
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8 CONCLUSION 

The task of developing a GUI and controller for Kelda’s oil drilling simulator was approached 
with focus on user experience and robustness. The development has followed the Scrum project 
method, and used version control tools and automatic documentation. TDD has been used to a 
limited degree, on stand-alone mathematical functions only. 

The GUI is developed to access all the simulator core’s features while being easy to use. It has the 
ability to be configured to different wells using CSV-files defining wellbore, trajectory and drill 
string data. It also has the ability to save new configuration data. Other features include status bar, 
running the simulation faster than real-time, being able to change choke pressure controller, visu-
alizing mud changes, and being controlled by joysticks and pre-recorded inputs. 

By analyzing both the given pressure model and step responses, a PI controller that provides sat-
isfactory results has been developed to control choke pressure. It utilizes feed forward control and 
gain scheduling to handle disturbances and nonlinearity. The controller makes the system stable, 
and satisfies the deviation requirements of 2.5-5 bars after rig pump disturbance, power loss and 
changes in set point. It will be a reference for Kelda’s more advanced model-based controller. 

The simulator core and GUI will continue to be work-in-progress, and there are several concrete 
features suggested for future development: 

 Bump-less switching of controllers 

 Go to steady-state after startup and configuration 

 Group indicators and controls by function 

 Establish interface between BOP and Mud Visualization and Simulator Core 

 Support several screen resolutions 

 Support dynamic scaling 

 Implement Kelda’s DHP controller 

 Add mud and temperature configuration 

 Add the possibility to record simulations 

 Add the possibility to start from a point in a recorded simulation 

 Filter set point value to ensure smooth transitions 

 Add ability to implement new controllers without changing code 

It is recommended that the GUI development follows the simulator core’s development cycle, thus 
always staying up to date.



Telemark University College  References 

IA6-1-15  54 

REFERENCES 

[1] Halliburton, “Asphaltene Control”, [Online]. Available: http://www.halliburton.com/en-
US/ps/multi-chem/pipeline-integrity-challenges/Asphaltene-Tendencies.page . [Acquired: 5 
May 2015]. 

[2] Naoki Schwartz and Harry R. Weber, “Bubble of methane triggered rig blast,” Southern 
California Public Radio, May 08 2010. [Online]. Available: 
http://www.scpr.org/news/2010/05/08/14902/bubble-methane-triggered-rig-blast/. [Acquired 
13 March 2015]. 

[3] National Oilwell Varco, “Blowout Preventers” [Online]. Available: 
https://www.nov.com/Segments/Rig_Systems/Land/Drilling_Pressure_Control/Blow-
out_Preventers.aspx . [Acquired 08 April 2015]. 

[4] ContiTech, “Instructions for the use of choke and kill lines” [Online]. Available: 
http://www.contitech-rubber.hu/pages/service/documents/downloads/hose_han-
dling_doc_TKO_AS2.pdf . [Acquired 13 May 2015]. 

[5] J. Y. Fiset, “Human-Machine Interface Design for Process Control Applications” [Online]. 
Available: 
https://books.google.no/books?id=NE_TEJBmwi8C&printsec=frontcover&hl=no&source=g
bs_ge_summary_r#v=onepage&q&f=false . [Acquired: 10 February 2015]. 

[6] K. Schwaber and J. Sutherland. (2013). “The Scrum Guide”. Available: 
http://www.scrumguides.org/scrum-guide.html. [Acquired: 8 May 2015]. 

[7] J. Stepka. (2011). “Bitbucket now rocks Git”. Available: 
http://blog.bitbucket.org/2011/10/03/bitbucket-now-rocks-git/. [Acquired: 8 May 2015]. 

[8] R. Osherove, “The Art of Unit Testing”. Shelter Island: Manning, 2014. 

[9] Halliburton, “Mud Pulse Telemetry System” [Online]: http://www.halliburton.com/en-
US/ps/sperry/drilling/telemetry/mud-pulse-systems.page. [Acquired 13 May 2015]. 

[10] D. J. Cooper. (2008). “Practical Process Control” [E-book]. Available: 
http://www.controlguru.com/. 

[11] J.M. Godhavn et al., “Drilling seeking automatic control solutions,” in Preprints of the 18th 
IFAC World Congress, Milano (Italy), 2011. 

[12] G.O. Kaasa et al., “Simplified Hydraulics Model Used for Intelligent Estimation of 
Downhole Pressure for a Managed-Pressure-Drilling Control System,” SPE Drilling & 
Completion, vol. 27, pp. 127-138, 2012. 

[13] S. Skogestad, “Simple analytic rules for model reduction and PID controller tuning,” 
Journal of Process Control, vol. 13, 2003. 

[14] F. Haugen, “Reguleringsteknikk”. Trondheim: Akademika Forlag, 2012. 

[15] E. Jahanshahi and S. Skogestad, “Comparison between nonlinear model-based controllers 
and gain-scheduling Internal Model Control based on identified model,” in 52nd IEEE 
Conference on Decision and Control, Florence (Italy), 2013. 

[16] J. G. Balchen, et al. “Frekvensanalyse” in Reguleringsteknikk, 2nd ed. Trondheim, Norway: 
ITK, 1999. 

[17] P. Robertson, “B-spline approximations in an optimization framework,” M.S. thesis, ITK, 
NTNU, Trondheim, Norway, 2013. 



Telemark University College  Attachments 

IA6-1-15  55 

ATTACHMENTS 

All attachments are found on the attached CD-ROM. 

Attachment A Bachelor Project 

Attachment B Sprint Plan 

Attachment C Sprint Report 

Attachment D Straume C-API User Manual 

Attachment E Automatic Documentation Generator 

Attachment F Straume Hydraulic Simulator – Subpanels 

Attachment G Straume Hydraulic Simulator – SubVIs 

Attachment H Controller Measurements and Results 


